Refine Your Search


Search Results

Technical Paper

Age-Specific Injury Risk Curves for Distributed, Anterior Thoracic Loading of Various Sizes of Adults Based on Sternal Deflections

Injury Risk Curves are developed from cadaver data for sternal deflections produced by anterior, distributed chest loads for a 25, 45, 55, 65 and 75 year-old Small Female, Mid-Size Male and Large Male based on the variations of bone strengths with age. These curves show that the risk of AIS ≥ 3 thoracic injury increases with the age of the person. This observation is consistent with NASS data of frontal accidents which shows that older unbelted drivers have a higher risk of AIS ≥ 3 chest injury than younger drivers.
Technical Paper

Biomechanical and Scaling Basis for Frontal and Side Impact Injury Assessment Reference Values

In 1983, General Motors Corporation (GM) petitioned the National Highway Traffic Safety Administration (NHTSA) to allow the use of the biofidelic Hybrid III midsize adult male dummy as an alternate test device for FMVSS 208 compliance testing of frontal impact, passive restraint systems. To support their petition, GM made public to the international automotive community the limit values that they imposed on the Hybrid III measurements, which were called Injury Assessment Reference Values (IARVs). During the past 20 years, these IARVs have been updated based on relevant biomechanical studies that have been published and scaled to provide IARVs for the Hybrid III and CRABI families of frontal impact dummies. Limit values have also been developed for the biofidelic side impact dummies, BioSID, ES-2 and SID-IIs.
Technical Paper

Side Impact Regulatory Trends, Crash Environment and Injury Risk in the USA

Light duty vehicles in the US are designed to meet and exceed regulatory standards, self-imposed industry agreements and safety rating tests conducted by NHTSA and IIHS. The evolution of side impact regulation in the US from 1973 to 2015 is discussed in the paper along with two key industry agreements in 2003 affecting design of restraint systems and structures for side impact protection. A combination of all the above influences shows that vehicles in the US are being designed to more demanding and comprehensive requirements than in any other region of the world. The crash environment in the US related to side impacts was defined based on data in the nationally representative crash database NASS. Crash environment factors, including the distribution of cars, light trucks and vans (LTV’s), and medium-to-heavy vehicles (MHV’s) in the fleet, and the frequency of their interactions with one another in side impacts, were considered.
Technical Paper

The Field Relevance of NHTSA's Oblique Research Moving Deformable Barrier Tests

A small overlap frontal crash test has been recently introduced by the Insurance Institute for Highway Safety in its frontal rating scheme. Another small overlap frontal crash test is under development by the National Highway Traffic Safety Administration (NHTSA). Whereas the IIHS test is conducted against a fixed rigid barrier, the NHTSA test is conducted with a moving deformable barrier that overlaps 35% of the vehicle being tested and the angle between the longitudinal axis of the barrier and the longitudinal axis of the test vehicle is 15 degrees. The field relevance of the IIHS test has been the subject of a paper by Prasad et al. (2014). The current study is aimed at examining the field relevance of the NHTSA test.
Technical Paper

Opportunities for Injury Reduction in US Frontal Crashes: An Overview by Structural Engagement, Vehicle Class, and Occupant Age

An overview NASS study of US frontal crashes was performed to investigate crash involvement, driver injury distributions and rates in airbag equipped vehicles by vehicle class and structural engagement. Frontal crash bins were based on taxonomy of structural engagement, i.e., Full Engagement, Offset, Between Rails and Corner impact crashes. A new classification of Corner impacts included frontal small overlap impacts with side damage as coded by NASS CDS. Belted drivers of two age groups, between 16 and 50 and over 50 years old, were considered. Vehicles were grouped into light and heavy passenger cars and lights trucks, and vans. A method to identify and address overly influential NASS weights was developed based on considerations of weighting factor statistics. The new taxonomy, with an expanded definition of corner impacts, allowed a more comprehensive classification of frontal crash modes.
Technical Paper

Biomechanical Assessment of a Rear-Seat Inflatable Seatbelt in Frontal Impacts

This study evaluated the biomechanical performance of a rear-seat inflatable seatbelt system and compared it to that of a 3-point seatbelt system, which has a long history of good real-world performance. Frontal-impact sled tests were conducted with Hybrid III anthropomorphic test devices (ATDs) and with post mortem human subjects (PMHS) using both restraint systems and a generic rear-seat configuration. Results from these tests demonstrated: a) reduction in forward head excursion with the inflatable seatbelt system when compared to that of a 3-point seatbelt and; b) a reduction in ATD and PMHS peak chest deflections and the number of PMHS rib fractures with the inflatable seatbelt system and c) a reduction in PMHS cervical-spine injuries, due to the interaction of the chin with the inflated shoulder belt. These results suggest that an inflatable seatbelt system will offer additional benefits to some occupants in the rear seats.
Technical Paper

Evaluation of the Field Relevance of Several Injury Risk Functions

An evaluation of the four injury risk curves proposed in the NHTSA NCAP for estimating the risk of AIS≻=3 injuries to the head, neck, chest and AIS≻=2 injury to the Knee-Thigh-Hip (KTH) complex has been conducted. The predicted injury risk to the four body regions based on driver dummy responses in over 300 frontal NCAP tests were compared against those to drivers involved in real-world crashes of similar severity as represented in the NASS. The results of the study show that the predicted injury risks to the head and chest were slightly below those in NASS, and the predicted risk for the knee-thigh-hip complex was substantially below that observed in the NASS. The predicted risk for the neck by the Nij curve was greater than the observed risk in NASS by an order of magnitude due to the Nij risk curve predicting a non-zero risk when Nij = 0. An alternative and published Nte risk curve produced a risk estimate consistent with the NASS estimate of neck injury.
Technical Paper

Impact Response and Biomechanical Analysis of the Knee-Thigh-Hip Complex in Frontal Impacts with a Full Human Body Finite Element Model

Changes in vehicle safety design technology and the increasing use of seat-belts and airbag restraint systems have gradually changed the relative proportion of lower extremity injuries. These changes in real world injuries have renewed interest and the need of further investigation into occupant injury mechanisms and biomechanical impact responses of the knee-thigh-hip complex during frontal impacts. This study uses a detailed finite element model of the human body to simulate occupant knee impacts experienced in frontal crashes. The human body model includes detailed anatomical features of the head, neck, shoulder, chest, thoracic and lumbar spine, abdomen, pelvis, and lower and upper extremities. The material properties used in the model for each anatomic part of the human body were obtained from test data reported in the literature. The human body model used in the current study has been previously validated in frontal and side impacts.
Technical Paper

Interactions of Out-of-Position Small-Female Surrogates with a Depowered Driver Airbag

The objectives of this study were to examine the response, repeatability, and injury predictive ability of the Hybrid III small-female dummy to static out-of-position (OOP) deployments using a depowered driver-side airbag. Five dummy tests were conducted in two OOP configurations by two different laboratories. The OOP configurations were nose-on-rim (NOR) and chest-on-bag (COB). Four cadaver tests were conducted using unembalmed small-female cadavers and the same airbags used in the dummy tests under similar OOP conditions. One cadaver test was designed to increase airbag loading of the face and neck (a forehead-on-rim, or FOR test). Comparison between the dummy tests of Lab 1 and of Lab 2 indicated the test conditions and results were repeatable. In the cadaver tests no skull fractures or neck injuries occurred. However, all four cadavers had multiple rib fractures.
Technical Paper

Biomechanical Analysis of Knee Impact in Frontal Collisions through Finite Element Simulations with a Full Human Body Model

This study applies a detailed finite element model of the human body to simulate occupant knee impacts experienced in vehicular frontal crashes. The human body model includes detailed anatomical features of the head, neck, chest, thoracic and lumbar spine, abdomen, and lower and upper extremities. The material properties used in the model for each anatomic part of the human body were obtained from test data reported in the literature. The total human body model used in the current study has been previously validated in frontal and side impacts. Several cadaver knee impact tests representing occupants in a frontal impact condition were simulated using the previously validated human body model. Model impact responses in terms of force-time and acceleration-time histories were compared with test results. In addition, stress distributions of the patella, femur, and pelvis were reported for the simulated test conditions.
Technical Paper

Occupant Responses in High-Speed Rear Crashes: Analysis of Government-Sponsored Tests

The objective of this study was to analyze available anthropomorphic test device (ATD) responses from FMVSS 301-type rear impact tests. Rear impact test data was obtained from NHTSA and consisted of dummy responses, test observations, photos and videos. The data was organized in four test series: 1) NCAP series of 30 New Car Assessment Program tests carried out at 35 mph with 1979-1980 model year vehicles, 2) Mobility series of 14 FMVSS 301 tests carried out at 30 mph with 1993 model year vehicles, 3) 301 MY 95+ series of 79 FMVSS 301 tests carried out at 30 mph with 1995-2005 model year vehicles and 4) ODB series of 17 Offset Deformable Barrier tests carried out at 50 mph with a 70% overlap using 1996-1999 model year vehicles. The results indicate very good occupant performance in yielding seats in the NCAP, Mobility and 301 MY 95+ test series.
Technical Paper

Stiff versus Yielding Seats: Analysis of Matched Rear Impact Tests

The objective of this study was to analyze available anthropomorphic test device (ATD) responses from KARCO rear impact tests and to evaluate an injury predictive model based on crash severity and occupant weight presented by Saczalski et al. (2004). The KARCO tests were carried out with various seat designs. Biomechanical responses were evaluated in speed ranges of 7-12, 13-17, 18-23 and 24-34 mph. For this analysis, all tests with matching yielding and stiff seats and matching occupant size and weight were analyzed for cases without 2nd row occupant interaction. Overall, the test data shows that conventional yielding seats provide a high degree of safety for small to large adult occupants in rear crashes; this data is also consistent with good field performance as found in NASS-CDS. Saczalski et al.'s (2004) predictive model of occupant injury is not correct as there are numerous cases from NASS-CDS that show no or minor injury in the region where serious injury is predicted.
Technical Paper

Macroscopic Constitutive Behaviors of Aluminum Honeycombs Under Dynamic Inclined Loads

Macroscopic constitutive behaviors of aluminum 5052-H38 honeycombs under dynamic inclined loads with respect to the out-of-plane direction are investigated by experiments. The results of the dynamic crush tests indicate that as the impact velocity increases, the normal crush strength increases and the shear strength remains nearly the same for a fixed ratio of the normal to shear displacement rate. The experimental results suggest that the macroscopic yield surface of the honeycomb specimens as a function of the impact velocity under the given dynamic inclined loads is not governed by the isotropic hardening rule of the classical plasticity theory. As the impact velocity increases, the shape of the macroscopic yield surface changes, or more specifically, the curvature of the yield surface increases near the pure compression state.
Technical Paper

Analysis and Evaluation of the Biofidelity of the Human Body Finite Element Model in Lateral Impact Simulations According to ISO-TR9790 Procedures

The biofidelity of the Ford Motor Company human body finite element (FE) model in side impact simulations was analyzed and evaluated following the procedures outlined in ISO technical report TR9790. This FE model, representing a 50th percentile adult male, was used to simulate the biomechanical impact tests described in ISO-TR9790. These laboratory tests were considered as suitable for assessing the lateral impact biofidelity of the head, neck, shoulder, thorax, abdomen, and pelvis of crash test dummies, subcomponent test devices, and math models that are used to represent a 50th percentile adult male. The simulated impact responses of the head, neck, shoulder, thorax, abdomen, and pelvis of the FE model were compared with the PMHS (Post Mortem Human Subject) data upon which the response requirements for side impact surrogates was based. An overall biofidelity rating of the human body FE model was determined using the ISO-TR9790 rating method.
Technical Paper

Development of Numerical Models for Injury Biomechanics Research: A Review of 50 Years of Publications in the Stapp Car Crash Conference

Numerical analyses frequently accompany experimental investigations that study injury biomechanics and improvements in automotive safety. Limited by computational speed, earlier mathematical models tended to simplify the system under study so that a set of differential equations could be written and solved. Advances in computing technology and analysis software have enabled the development of many sophisticated models that have the potential to provide a more comprehensive understanding of human impact response, injury mechanisms, and tolerance. In this article, 50 years of publications on numerical modeling published in the Stapp Car Crash Conference Proceedings and Journal were reviewed. These models were based on: (a) author-developed equations and software, (b) public and commercially available programs to solve rigid body dynamic models (such as MVMA2D, CAL3D or ATB, and MADYMO), and (c) finite element models.
Technical Paper

Derivation and Theoretical Assessment of a Set of Biomechanics-based, AIS2+ Risk Equations for the Knee-Thigh-Hip Complex

A set of risk equations was derived to estimate the probability of sustaining a moderate-to-serious injury to the knee-thigh-hip complex (KTH) in a frontal crash. The study consisted of four parts. First, data pertaining to knee-loaded, whole-body, post-mortem human subjects (PMHS) were collected from the literature, and the attendant response data (e.g., axial compressive load applied to the knee) were normalized to those of a mid-sized male. Second, numerous statistical analyses and mathematical constructs were used to derive the set of risk equations for adults of various ages and genders. Third, field data from the National Automotive Sampling System (NASS) were analyzed for subsequent comparison purposes.
Technical Paper

Biomechanics of 4-Point Seat Belt Systems in Farside Impacts

The biomechanical behavior of a harness style 4-point seat belt system in farside impacts was investigated through dummy and post mortem human subject tests. Specifically, this study was conducted to evaluate the effect of the inboard shoulder belt portion of a 4-point seat belt on the risk of vertebral and soft-tissue neck injuries during simulated farside impacts. Two series of sled tests simulating farside impacts were completed with crash dummies of different sizes, masses and designs to determine the forces and moments on the neck associated with loading of the shoulder belt. The tests were also performed to help determine the appropriate dummy to use in further testing. The BioSID and SID-IIs reasonably simulated the expected kinematics response and appeared to be reasonable dummies to use for further testing. Analysis also showed that dummy injury measures were lower than injury assessment reference values used in development of side impact airbags.
Technical Paper

Thoracic Response of Belted PMHS, the Hybrid III, and the THOR-NT Mid-Sized Male Surrogates in Low-Speed, Frontal Crashes

Injury to the thorax is the predominant cause of fatalities in crash-involved automobile occupants over the age of 65, and many elderly-occupant automobile fatalities occur in crashes below compliance or consumer information test speeds. As the average age of the automotive population increases, thoracic injury prevention in lower severity crashes will play an increasingly important role in automobile safety. This study presents the results of a series of sled tests to investigate the thoracic deformation, kinematic, and injury responses of belted post-mortem human surrogates (PMHS, average age 44 years) and frontal anthropomorphic test devices (ATDs) in low-speed frontal crashes. Nine 29 km/h (three PMHS, three Hybrid III 50th% male ATD, three THOR-NT ATD) and three 38 km/h (one PMHS, two Hybrid III) frontal sled tests were performed to simulate an occupant seated in the right front passenger seat of a mid-sized sedan restrained with a standard (not force-limited) 3-point seatbelt.
Technical Paper

Lower-Body Injury Rates in Full-Engagement Frontal Impacts: Field Data and Logistic Models

Lower-body injury data for adults in real-world frontal impacts in the National Automotive Sampling System (NASS) were collected, analyzed, and modeled via statistical methods. Two levels of lower-body injury were considered: maximum serious-to-fatal (MAIS3+) and moderate-to-fatal (MAIS2+). In the analysis, we observed that a substantial fraction of all lower-body injured occupants had no recorded floor/toe pan intrusion: 47% of all MAIS3+ injured occupants; 69% of all MAIS2+ injured occupants. In the statistical modeling, we developed binary logistic regression models to fit the MAIS3+ and MAIS 2+ injury data. The statistically significant variables (p ≤ 0.05) were the speed change of the crash, postcrash floor/toe pan intrusion, level of restraint, occupant age, and occupant gender.
Technical Paper

Biomechanical Analysis of Human Abdominal Impact Responses and Injuries through Finite Element Simulations of a Full Human Body Model

Human abdominal response and injury in blunt impacts was investigated through finite element simulations of cadaver tests using a full human body model of an average-sized adult male. The model was validated at various impact speeds by comparing model responses with available experimental cadaver test data in pendulum side impacts and frontal rigid bar impacts from various sources. Results of various abdominal impact simulations are presented in this paper. Model-predicted abdominal dynamic responses such as force-time and force-deflection characteristics, and injury severities, measured by organ pressures, for the simulated impact conditions are presented. Quantitative results such as impact forces, abdominal deflections, internal organ stresses have shown that the abdomen responded differently to left and right side impacts, especially in low speed impact.