Criteria

Text:
Author:
Display:

Results

Viewing 1 to 30 of 57
2016-11-07
Technical Paper
2016-22-0001
Harold J. Mertz, Priya Prasad, Dainius J. Dalmotas, Annette L. Irwin
Injury Risk Curves are developed from cadaver data for sternal deflections produced by anterior, distributed chest loads for a 25, 45, 55, 65 and 75 year-old Small Female, Mid-Size Male and Large Male based on the variations of bone strengths with age. These curves show that the risk of AIS ≥ 3 thoracic injury increases with the age of the person. This observation is consistent with NASS data of frontal accidents which shows that older unbelted drivers have a higher risk of AIS ≥ 3 chest injury than younger drivers.
2016-11-07
Technical Paper
2016-22-0018
Harold J. Mertz, Annette L. Irwin, Priya Prasad
In 1983, General Motors Corporation (GM) petitioned the National Highway Traffic Safety Administration (NHTSA) to allow the use of the biofidelic Hybrid III midsize adult male dummy as an alternate test device for FMVSS 208 compliance testing of frontal impact, passive restraint systems. To support their petition, GM made public to the international automotive community the limit values that they imposed on the Hybrid III measurements, which were called Injury Assessment Reference Values (IARVs). During the past 20 years, these IARVs have been updated based on relevant biomechanical studies that have been published and scaled to provide IARVs for the Hybrid III and CRABI families of frontal impact dummies. Limit values have also been developed for the biofidelic side impact dummies, BioSID, ES-2 and SID-IIs.
2015-11-09
Technical Paper
2015-22-0004
Priya Prasad, Dainius Dalmotas, Aline Chouinard
Light duty vehicles in the US are designed to meet and exceed regulatory standards, self-imposed industry agreements and safety rating tests conducted by NHTSA and IIHS. The evolution of side impact regulation in the US from 1973 to 2015 is discussed in the paper along with two key industry agreements in 2003 affecting design of restraint systems and structures for side impact protection. A combination of all the above influences shows that vehicles in the US are being designed to more demanding and comprehensive requirements than in any other region of the world. The crash environment in the US related to side impacts was defined based on data in the nationally representative crash database NASS. Crash environment factors, including the distribution of cars, light trucks and vans (LTV’s), and medium-to-heavy vehicles (MHV’s) in the fleet, and the frequency of their interactions with one another in side impacts, were considered.
2014-11-10
Technical Paper
2014-22-0007
Priya Prasad, Dainius Dalmotas, Alan German
A small overlap frontal crash test has been recently introduced by the Insurance Institute for Highway Safety in its frontal rating scheme. Another small overlap frontal crash test is under development by the National Highway Traffic Safety Administration (NHTSA). Whereas the IIHS test is conducted against a fixed rigid barrier, the NHTSA test is conducted with a moving deformable barrier that overlaps 35% of the vehicle being tested and the angle between the longitudinal axis of the barrier and the longitudinal axis of the test vehicle is 15 degrees. The field relevance of the IIHS test has been the subject of a paper by Prasad et al. (2014). The current study is aimed at examining the field relevance of the NHTSA test.
2013-11-11
Technical Paper
2013-22-0017
Randa Radwan Samaha, Priya Prasad, Lilly Nix
An overview NASS study of US frontal crashes was performed to investigate crash involvement, driver injury distributions and rates in airbag equipped vehicles by vehicle class and structural engagement. Frontal crash bins were based on taxonomy of structural engagement, i.e., Full Engagement, Offset, Between Rails and Corner impact crashes. A new classification of Corner impacts included frontal small overlap impacts with side damage as coded by NASS CDS. Belted drivers of two age groups, between 16 and 50 and over 50 years old, were considered. Vehicles were grouped into light and heavy passenger cars and lights trucks, and vans. A method to identify and address overly influential NASS weights was developed based on considerations of weighting factor statistics. The new taxonomy, with an expanded definition of corner impacts, allowed a more comprehensive classification of frontal crash modes.
2011-11-07
Technical Paper
2011-22-0008
Srinivasan Sundararajan, Stephen W. Rouhana, Derek Board, Ed DeSmet, Priya Prasad, Jonathan D. Rupp, Carl S. Miller, Lawrence W. Schneider
This study evaluated the biomechanical performance of a rear-seat inflatable seatbelt system and compared it to that of a 3-point seatbelt system, which has a long history of good real-world performance. Frontal-impact sled tests were conducted with Hybrid III anthropomorphic test devices (ATDs) and with post mortem human subjects (PMHS) using both restraint systems and a generic rear-seat configuration. Results from these tests demonstrated: a) reduction in forward head excursion with the inflatable seatbelt system when compared to that of a 3-point seatbelt and; b) a reduction in ATD and PMHS peak chest deflections and the number of PMHS rib fractures with the inflatable seatbelt system and c) a reduction in PMHS cervical-spine injuries, due to the interaction of the chin with the inflated shoulder belt. These results suggest that an inflatable seatbelt system will offer additional benefits to some occupants in the rear seats.
2010-11-03
Technical Paper
2010-22-0004
Priya Prasad, Harold J. Mertz, Dainius J. Dalmotas, Jeffrey S. Augenstein, Kennerly Digges
An evaluation of the four injury risk curves proposed in the NHTSA NCAP for estimating the risk of AIS≻=3 injuries to the head, neck, chest and AIS≻=2 injury to the Knee-Thigh-Hip (KTH) complex has been conducted. The predicted injury risk to the four body regions based on driver dummy responses in over 300 frontal NCAP tests were compared against those to drivers involved in real-world crashes of similar severity as represented in the NASS. The results of the study show that the predicted injury risks to the head and chest were slightly below those in NASS, and the predicted risk for the knee-thigh-hip complex was substantially below that observed in the NASS. The predicted risk for the neck by the Nij curve was greater than the observed risk in NASS by an order of magnitude due to the Nij risk curve predicting a non-zero risk when Nij = 0. An alternative and published Nte risk curve produced a risk estimate consistent with the NASS estimate of neck injury.
2008-11-03
Technical Paper
2008-22-0019
Jesse S. Ruan, Raed El-Jawahri, Saeed Barbat, Stephen W. Rouhana, Priya Prasad
Changes in vehicle safety design technology and the increasing use of seat-belts and airbag restraint systems have gradually changed the relative proportion of lower extremity injuries. These changes in real world injuries have renewed interest and the need of further investigation into occupant injury mechanisms and biomechanical impact responses of the knee-thigh-hip complex during frontal impacts. This study uses a detailed finite element model of the human body to simulate occupant knee impacts experienced in frontal crashes. The human body model includes detailed anatomical features of the head, neck, shoulder, chest, thoracic and lumbar spine, abdomen, pelvis, and lower and upper extremities. The material properties used in the model for each anatomic part of the human body were obtained from test data reported in the literature. The human body model used in the current study has been previously validated in frontal and side impacts.
2008-11-03
Technical Paper
2008-22-0008
Priya Prasad, Lawrence W. Schneider, Warren N. Hardy
The objectives of this study were to examine the response, repeatability, and injury predictive ability of the Hybrid III small-female dummy to static out-of-position (OOP) deployments using a depowered driver-side airbag. Five dummy tests were conducted in two OOP configurations by two different laboratories. The OOP configurations were nose-on-rim (NOR) and chest-on-bag (COB). Four cadaver tests were conducted using unembalmed small-female cadavers and the same airbags used in the dummy tests under similar OOP conditions. One cadaver test was designed to increase airbag loading of the face and neck (a forehead-on-rim, or FOR test). Comparison between the dummy tests of Lab 1 and of Lab 2 indicated the test conditions and results were repeatable. In the cadaver tests no skull fractures or neck injuries occurred. However, all four cadavers had multiple rib fractures.
2008-06-17
Technical Paper
2008-01-1887
Jesse S. Ruan, Raed El-Jawahri, Saeed Barbat, Stephen W. Rouhana, Priya Prasad
This study applies a detailed finite element model of the human body to simulate occupant knee impacts experienced in vehicular frontal crashes. The human body model includes detailed anatomical features of the head, neck, chest, thoracic and lumbar spine, abdomen, and lower and upper extremities. The material properties used in the model for each anatomic part of the human body were obtained from test data reported in the literature. The total human body model used in the current study has been previously validated in frontal and side impacts. Several cadaver knee impact tests representing occupants in a frontal impact condition were simulated using the previously validated human body model. Model impact responses in terms of force-time and acceleration-time histories were compared with test results. In addition, stress distributions of the patella, femur, and pelvis were reported for the simulated test conditions.
2008-04-14
Technical Paper
2008-01-0188
David C. Viano, Chantal S. Parenteau, Priya Prasad, Roger Burnett
The objective of this study was to analyze available anthropomorphic test device (ATD) responses from FMVSS 301-type rear impact tests. Rear impact test data was obtained from NHTSA and consisted of dummy responses, test observations, photos and videos. The data was organized in four test series: 1) NCAP series of 30 New Car Assessment Program tests carried out at 35 mph with 1979-1980 model year vehicles, 2) Mobility series of 14 FMVSS 301 tests carried out at 30 mph with 1993 model year vehicles, 3) 301 MY 95+ series of 79 FMVSS 301 tests carried out at 30 mph with 1995-2005 model year vehicles and 4) ODB series of 17 Offset Deformable Barrier tests carried out at 50 mph with a 70% overlap using 1996-1999 model year vehicles. The results indicate very good occupant performance in yielding seats in the NCAP, Mobility and 301 MY 95+ test series.
2007-04-16
Technical Paper
2007-01-0708
David C. Viano, Chantal S Parenteau, Priya Prasad, Roger Burnett
The objective of this study was to analyze available anthropomorphic test device (ATD) responses from KARCO rear impact tests and to evaluate an injury predictive model based on crash severity and occupant weight presented by Saczalski et al. (2004). The KARCO tests were carried out with various seat designs. Biomechanical responses were evaluated in speed ranges of 7-12, 13-17, 18-23 and 24-34 mph. For this analysis, all tests with matching yielding and stiff seats and matching occupant size and weight were analyzed for cases without 2nd row occupant interaction. Overall, the test data shows that conventional yielding seats provide a high degree of safety for small to large adult occupants in rear crashes; this data is also consistent with good field performance as found in NASS-CDS. Saczalski et al.'s (2004) predictive model of occupant injury is not correct as there are numerous cases from NASS-CDS that show no or minor injury in the region where serious injury is predicted.
2007-04-16
Technical Paper
2007-01-0979
Sung-Tae Hong, Jwo Pan, Tau Tyan, Priya Prasad
Macroscopic constitutive behaviors of aluminum 5052-H38 honeycombs under dynamic inclined loads with respect to the out-of-plane direction are investigated by experiments. The results of the dynamic crush tests indicate that as the impact velocity increases, the normal crush strength increases and the shear strength remains nearly the same for a fixed ratio of the normal to shear displacement rate. The experimental results suggest that the macroscopic yield surface of the honeycomb specimens as a function of the impact velocity under the given dynamic inclined loads is not governed by the isotropic hardening rule of the classical plasticity theory. As the impact velocity increases, the shape of the macroscopic yield surface changes, or more specifically, the curvature of the yield surface increases near the pure compression state.
2006-11-06
Technical Paper
2006-22-0018
Jesse S. Ruan, Raed El-Jawahri, Stephen W. Rouhana, Saeed Barbat, Priya Prasad
The biofidelity of the Ford Motor Company human body finite element (FE) model in side impact simulations was analyzed and evaluated following the procedures outlined in ISO technical report TR9790. This FE model, representing a 50th percentile adult male, was used to simulate the biomechanical impact tests described in ISO-TR9790. These laboratory tests were considered as suitable for assessing the lateral impact biofidelity of the head, neck, shoulder, thorax, abdomen, and pelvis of crash test dummies, subcomponent test devices, and math models that are used to represent a 50th percentile adult male. The simulated impact responses of the head, neck, shoulder, thorax, abdomen, and pelvis of the FE model were compared with the PMHS (Post Mortem Human Subject) data upon which the response requirements for side impact surrogates was based. An overall biofidelity rating of the human body FE model was determined using the ISO-TR9790 rating method.
2006-11-06
Technical Paper
2006-22-0017
King H. Yang, Jingwen Hu, Nicholas A. White, Albert I. King, Clifford C. Chou, Priya Prasad
Numerical analyses frequently accompany experimental investigations that study injury biomechanics and improvements in automotive safety. Limited by computational speed, earlier mathematical models tended to simplify the system under study so that a set of differential equations could be written and solved. Advances in computing technology and analysis software have enabled the development of many sophisticated models that have the potential to provide a more comprehensive understanding of human impact response, injury mechanisms, and tolerance. In this article, 50 years of publications on numerical modeling published in the Stapp Car Crash Conference Proceedings and Journal were reviewed. These models were based on: (a) author-developed equations and software, (b) public and commercially available programs to solve rigid body dynamic models (such as MVMA2D, CAL3D or ATB, and MADYMO), and (c) finite element models.
2006-11-06
Technical Paper
2006-22-0005
Tony R. Laituri, Scott Henry, Kaye Sullivan, Priya Prasad
A set of risk equations was derived to estimate the probability of sustaining a moderate-to-serious injury to the knee-thigh-hip complex (KTH) in a frontal crash. The study consisted of four parts. First, data pertaining to knee-loaded, whole-body, post-mortem human subjects (PMHS) were collected from the literature, and the attendant response data (e.g., axial compressive load applied to the knee) were normalized to those of a mid-sized male. Second, numerous statistical analyses and mathematical constructs were used to derive the set of risk equations for adults of various ages and genders. Third, field data from the National Automotive Sampling System (NASS) were analyzed for subsequent comparison purposes.
2006-11-06
Technical Paper
2006-22-0012
Stephen W. Rouhana, Sundeep V. Kankanala, Priya Prasad, Jonathan D. Rupp, Thomas A. Jeffreys, Lawrence W. Schneider
The biomechanical behavior of a harness style 4-point seat belt system in farside impacts was investigated through dummy and post mortem human subject tests. Specifically, this study was conducted to evaluate the effect of the inboard shoulder belt portion of a 4-point seat belt on the risk of vertebral and soft-tissue neck injuries during simulated farside impacts. Two series of sled tests simulating farside impacts were completed with crash dummies of different sizes, masses and designs to determine the forces and moments on the neck associated with loading of the shoulder belt. The tests were also performed to help determine the appropriate dummy to use in further testing. The BioSID and SID-IIs reasonably simulated the expected kinematics response and appeared to be reasonable dummies to use for further testing. Analysis also showed that dummy injury measures were lower than injury assessment reference values used in development of side impact airbags.
2006-11-06
Technical Paper
2006-22-0009
Jason Forman, David Lessley, C. Greg Shaw, Jay Evans, Richard Kent, Stephen W. Rouhana, Priya Prasad
Injury to the thorax is the predominant cause of fatalities in crash-involved automobile occupants over the age of 65, and many elderly-occupant automobile fatalities occur in crashes below compliance or consumer information test speeds. As the average age of the automotive population increases, thoracic injury prevention in lower severity crashes will play an increasingly important role in automobile safety. This study presents the results of a series of sled tests to investigate the thoracic deformation, kinematic, and injury responses of belted post-mortem human surrogates (PMHS, average age 44 years) and frontal anthropomorphic test devices (ATDs) in low-speed frontal crashes. Nine 29 km/h (three PMHS, three Hybrid III 50th% male ATD, three THOR-NT ATD) and three 38 km/h (one PMHS, two Hybrid III) frontal sled tests were performed to simulate an occupant seated in the right front passenger seat of a mid-sized sedan restrained with a standard (not force-limited) 3-point seatbelt.
2006-04-03
Technical Paper
2006-01-1666
Tony R. Laituri, Scott Henry, Kaye Sullivan, Priya Prasad
Lower-body injury data for adults in real-world frontal impacts in the National Automotive Sampling System (NASS) were collected, analyzed, and modeled via statistical methods. Two levels of lower-body injury were considered: maximum serious-to-fatal (MAIS3+) and moderate-to-fatal (MAIS2+). In the analysis, we observed that a substantial fraction of all lower-body injured occupants had no recorded floor/toe pan intrusion: 47% of all MAIS3+ injured occupants; 69% of all MAIS2+ injured occupants. In the statistical modeling, we developed binary logistic regression models to fit the MAIS3+ and MAIS 2+ injury data. The statistically significant variables (p ≤ 0.05) were the speed change of the crash, postcrash floor/toe pan intrusion, level of restraint, occupant age, and occupant gender.
2005-11-09
Technical Paper
2005-22-0016
Jesse S. Ruan, Raed El-Jawahri, Saeed Barbat, Priya Prasad
Human abdominal response and injury in blunt impacts was investigated through finite element simulations of cadaver tests using a full human body model of an average-sized adult male. The model was validated at various impact speeds by comparing model responses with available experimental cadaver test data in pendulum side impacts and frontal rigid bar impacts from various sources. Results of various abdominal impact simulations are presented in this paper. Model-predicted abdominal dynamic responses such as force-time and force-deflection characteristics, and injury severities, measured by organ pressures, for the simulated impact conditions are presented. Quantitative results such as impact forces, abdominal deflections, internal organ stresses have shown that the abdomen responded differently to left and right side impacts, especially in low speed impact.
2005-11-09
Technical Paper
2005-22-0017
Srini Sundararajan, Priya Prasad, Stephen W. Rouhana, Constantine K. Demetropoulos, King H. Yang, Albert I. King, Lutz -P. Nolte
The purpose of this study was to determine the characteristics of eighteen lumbar spine motion segments subjected to lateral shear forces under quasi-static (0.5 mm/s) and dynamic (500 mm/s) test conditions. The quasi-static test was also performed on the lumbar spine of a side impact anthropomorphic test device, the EuroSID-2 (ES-2). In the quasi-static tests, the maximum force before disc-endplate separation in the PMHS lumbar motion segments was 1850 ± 612 N, while the average linear stiffness of PMHS lumbar motion segments was 323 ± 126 N/mm. There was a statistically significant difference between the quasi-static (1850 ± 612 N) and dynamic (2616 ± 1151 N) maximum shear forces. The ES-2 lumbar spine (149 N/mm) was more compliant than the PMHS lumbar segments under the quasi-static test condition.
2005-04-11
Technical Paper
2005-01-0297
Tony R. Laituri, Priya Prasad, Kaye Sullivan, Michael Frankstein, Robert S. Thomas
An age-dependent, serious-to-fatal (AIS3+), thoracic risk curve was derived and evaluated for frontal impacts. The study consisted of four parts. In Part 1, two datasets of post mortem human subjects (PMHS) were generated for statistical and sensitivity analyses. In Part 2, logistic regression analyses were conducted. For each dataset, two statistical methods were applied: (1) a conventional maximum likelihood method, and (2) a modified maximum likelihood method. Therefore, four statistical models were derived — one for each dataset/statistical method combination. For all of the resulting statistical models (risk curves), the linear combination of maximum normalized sternum deflection and age of the PMHS was identified as a feasible predictor of AIS3+ thoracic injury probability. In Part 3, the PMHS-based risk curves were transformed into test-dummy-based risk curves. In Part 4, validation studies were conducted for each risk curve.
2004-11-01
Technical Paper
2004-22-0020
Tony R. Laituri, Donald Sullivan, Kaye Sullivan, Priya Prasad
A theoretical math model was created to assess the net effect of aging populations versus evolving system designs from the standpoint of thoracic injury potential. The model was used to project the next twenty-five years of thoracic injuries in Canada. The choice of Canada was topical because rulemaking for CMVSS 208 has been proposed recently. The study was limited to properly-belted, front-outboard, adult occupants in 11-1 o'clock frontal crashes. Moreover, only AIS3+thoracic injury potential was considered. The research consisted of four steps. First, sub-models were developed and integrated. The sub-models were made for numerous real-world effects including population growth, crash involvement, fleet penetration of various systems (via system introduction, vehicle production, and vehicle attrition), and attendant injury risk estimation. Second, existing NASS data were used to estimate the number of AIS3+ chest-injured drivers in Canada in 2001.
2004-11-01
Technical Paper
2004-22-0015
Srini Sundararajan, Priya Prasad, Constantine K. Demetropoulos, Scott Tashman, Paul C. Begeman, King H. Yang, Albert I. King
The purpose of this study was to determine the effect of head-neck position on cervical facet stretch during low speed rear end impact. Twelve tests were conducted on four Post Mortem Human Subjects (PMHS) in a generic bucket seat environment. Three head positions, namely Normal (neutral), Zero Clearance between the head and head restraint, and Body Forward positions were tested. A high-speed x-ray system was used to record the motion of cervical vertebrae during these tests. Results demonstrate that: a) The maximum mean facet stretch at head restraint contact occurs at MS4 and MS5 for the Body Forward condition, b) The lower neck flexion moment, prior to head contact, shows a non-linear relationship with facet stretch, and c) “Differential rebound” during rear end impact increases facet stretch.
2003-10-27
Technical Paper
2003-22-0014
Jesse Ruan, Raed El-Jawahri, Li Chai, Saeed Barbat, Priya Prasad
Human thoracic dynamic responses and injuries associated with frontal impact, side impact, and belt loading were investigated and predicted using a complete human body finite element model for an average adult male. The human body model was developed to study the impact biomechanics of a vehicular occupant. Its geometry was based on the Visible Human Project (National Library of Medicine) and the topographies from human body anatomical texts. The data was then scaled to an average adult male according to available biomechanical data from the literature. The model includes details of the head, neck, ribcage, abdomen, thoracic and lumbar spine, internal organs of the chest and abdomen, pelvis, and the upper and lower extremities. The present study is focused on the dynamic response and injuries of the thorax.
2003-10-27
Technical Paper
2003-22-0009
Harold J. Mertz, Annette L. Irwin, Priya Prasad
In 1983, General Motors Corporation (GM) petitioned the National Highway Traffic Safety Administration (NHTSA) to allow the use of the biofidelic Hybrid III midsize adult male dummy as an alternate test device for FMVSS 208 compliance testing of frontal impact, passive restraint systems. To support their petition, GM made public to the international automotive community the limit values that they imposed on the Hybrid III measurements, which were called Injury Assessment Reference Values (IARVs). During the past 20 years, these IARVs have been updated based on relevant biomechanical studies that have been published and scaled to provide IARVs for the Hybrid III and CRABI families of frontal impact dummies. Limit values have also been developed for the biofidelic side impact dummies, BioSID, EuroSID2 and SID-IIs.
2003-10-27
Technical Paper
2003-22-0017
Stephen W. Rouhana, Paul G. Bedewi, Sundeep V. Kankanala, Priya Prasad, Joseph J. Zwolinski, Alex G. Meduvsky, Jonathan D. Rupp, Thomas A. Jeffreys, Lawrence W. Schneider
The biomechanical behavior of 4-point seat belt systems was investigated through MADYMO modeling, dummy tests and post mortem human subject tests. This study was conducted to assess the effect of 4-point seat belts on the risk of thoracic injury in frontal impacts, to evaluate the ability to prevent submarining under the lap belt using 4-point seat belts, and to examine whether 4-point belts may induce injuries not typically observed with 3-point seat belts. The performance of two types of 4-point seat belts was compared with that of a pretensioned, load-limited, 3-point seat belt. A 3-point belt with an extra shoulder belt that “crisscrossed” the chest (X4) appeared to add constraint to the torso and increased chest deflection and injury risk. Harness style shoulder belts (V4) loaded the body in a different biomechanical manner than 3-point and X4 belts.
2003-05-19
Technical Paper
2003-06-0153
Saeed Barbat, Xiaowei Li, Phillip Przybylo, Priya Prasad
This paper describes a CAE-based methodology used to identity major factors influencing vehicle structural performance and crash energy management in full-frontal vehicle-to-vehicle collisions. Finite element models of an “average” SUV and an “average” full-size passenger vehicle were used in this study. The determining factors of vehicle compatibility in multi-vehicle collisions are relative mass, relative stiffness and relative geometry. Four parameters of the average SUV, mass, fore rail length, fore rail thickness, and fore rail height were selected as design variables. A uniformly spaced Optimal Latin Hypercube sampling technique was employed to probe the design space of these variables using thirteen simulation runs. Dash intrusions in the passenger vehicle and the absorbed collision energy in both vehicles were selected as response variables.
2003-03-03
Technical Paper
2003-01-1214
Lan Wang, Richard Banglmaier, Priya Prasad
Risk curves are developed for several crash data sets, expressing the probabilities of injury as a function of HIC, Extension Moment, Neck Tension and Maximum Deflection, respectively. The statistical method uses concept of thresholds that are interval censored and right censored. A combined evaluation method is used to select a “best” curve among the curves derived from various methods.
2003-03-03
Technical Paper
2003-01-1355
Tony R. Laituri, Priya Prasad, Brian P. Kachnowski, Kaye Sullivan, Phillip A. Przybylo
A new, AIS3+ thoracic risk equation based on chest deflection was derived and assessed for drivers subjected to concentrated (belt-like) loading. The new risk equation was derived from analysis of an existing database of post mortem human subjects in controlled, laboratory sled tests. Binary logistic regression analysis was performed on a subset of the data, namely, 25th-75th percentile men (by weight) from 36-65 years old whose thoracic deformation patterns were due to concentrated (belt-like) loading. Other subsets of data had insufficient size to conduct the analysis. The resulting thoracic risk equation was adjusted to predict the AIS3+ thoracic risks for average-aged occupants in frontal crashes (i.e., 30 years old). Biomechanical scaling was used to derive the corresponding relationships for the small female and large male dummies. The new thoracic risk equations and three other sets of existing equations were evaluated as predictors of real-world crash outcomes.
Viewing 1 to 30 of 57

Filter

  • Range:
    to:
  • Year: