Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

AMT Reverse Gear Engagement Dynamics and Control

2019-01-09
2019-26-0046
Now a day’s automated manual transmissions (AMT) are getting popular because of hassle-free gear shifting and improved fuel economy. OEMs are converting their existing manual gearbox to AMT gearbox with solution like hydraulic or electric AMT kit that replaces the manual shift mechanism to automated actuators. Generally, in manual gearbox, the operational principal of reverse gear is sliding mesh. Due to sliding mesh gear arrangement, it can create interruption for gearshift while controlling shift actuators. In this paper, reverse gear shift arrangement and its operational dynamics at different operating condition has been studied and analyzed in detail. Based on status of vehicle, to ease the gearshift, engagement flow process proposed. The control methods that increases probability of smooth and easier shifting in all operating condition discussed in detail. The developed control algorithm discussed along with its implementation on real vehicle and results.
Technical Paper

Improvement in Shift Quality in a Multi Speed Gearbox of an Electric Vehicle through Synchronizer Location Optimization

2017-03-28
2017-01-1596
Electrical and Series Hybrid Vehicles are generally provided with single speed reduction gearbox. To improve performance and drive range, a two-speed gearbox with coordinated control of traction motor and gearshift actuator is proposed. For a two-speed gearbox, gearshift without clutch would increase the shifting effort. Active Synchronization is introduced for a smoother gearshift even without clutch. The quality of gearshift is considered as a function of applied shift force and time taken. To enhance the quality of the gearshift further, the location of the synchronizer in the transmission system is optimized. To validate the improvement in the quality of the gearshift, a mathematical model of the two-speed gearbox incorporating proposed location of synchronizer assembly along with active synchronization is developed. The qualitative and quantitative analysis of the results achieved is presented.
Technical Paper

Development of a P3 5-Speed Hybrid AMT

2017-01-10
2017-26-0090
The necessity of hybrid vehicles and electric vehicles is well known by now for reasons like fossil fuel depletion, climate change, emission norms mandated by regulations etc. With the addition of electric motor, battery and associated power electronics, the cost of powertrain and hence the vehicle goes up, which is often a hindrance for OEMs and end-customers. With the objective to make a cost-effective strong hybrid, Tata Motors has approached this problem by taking economies of scale approach i.e. developing an add-on gearbox module, which can fit a family of cars, in a P3-off axis hybrid configuration to an electrically actuated AMT. This paper presents the preliminary simulations, which show this architecture yielding a reduction of fuel consumption by ~20% for a B-class sedan/compact SUV of ~1800kg and ~15% improvement in acceleration performance. Additionally, the design and packaging studies show the fitment possibility in a highly congested powertrain bay.
Journal Article

Development of High Fidelity Dynamic Model with Thermal Response for Single Plate Dry Clutch

2017-01-10
2017-26-0260
Single plate dry clutch is most commonly used in automotive transmission. This paper proposes a unique approach of modelling a single plate dry clutch in Simulink and Simscape simulation environment. Clutch model is divided into two subsystems as translational and rotational. The translational system is linear system of diaphragm and cushion spring as a two-degree freedom system. Nonlinearity of the diaphragm and cushion spring has been modelled based on experimental data. This enables to simulate friction torque variation during clutch engagement. In rotational system, frictional torque generation between flywheel-clutch disc and pressure plate-clutch disc has been modelled separately. This novel approach of developing separate friction models helps in understanding variation in torque carrying capacity due to rise in the temperature of the friction pads because of frictional and engine heat.
Technical Paper

Regenerative Braking Strategy for an Unaltered Mechanical Braking System of a Conventional Vehicle Converted into a Hybrid Vehicle

2013-01-09
2013-26-0155
Regenerative braking has become one of the major features for a hybrid vehicle as it converts brake energy into electrical energy storable into battery and leads to an increase in overall fuel efficiency of the vehicle. Traditional regenerative braking systems are designed such that the mechanical braking force from the friction brakes is varied in order to get maximum electric braking. This is the optimum method; however, such a system calls from electronics (Anti-lock Braking System) for regulation of mechanical braking leading to an increased cost. In this paper, the authors present a new strategy for implementing a regenerative brake strategy without changing the mechanical brake system of a conventional vehicle converted to a hybrid vehicle. The electric motor that serves as the traction motor or the Integrated Starter Generator (ISG) system, is used for regenerative braking also. There is no change in the other vehicle specifications as compared to the conventional vehicle.
X