Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Impact of SCR Activity on Soot Regeneration and the Converse Effects of Soot Regeneration on SCR Activity on a Vanadia-SCRF®

2018-04-03
2018-01-0962
The influence of SCR (selective catalytic reduction) activity on soot regeneration was investigated using engine test measurements with and without urea dosing on a vanadia-SCRF®1, also known as a vanadia SCR coated diesel particulate filter (V.SCR-DPF). The extent and rate of passive soot regeneration is significantly reduced in the presence of SCR activity especially at high temperatures (>250 °C). The reduction in soot regeneration is because some of the NO2, which would otherwise react with the soot, is consumed by SCR reactions and consequently the rate of soot regeneration is lower when urea is dosed. The converse effects of soot oxidation on SCR activity were studied separately by analysing steady-state light-off engine measurements with different initial soot loadings on the V.SCR-DPF. The measurements show an increase in NOX conversion with increasing soot loading.
Journal Article

NOx and PM Reduction from Diesel Exhaust Using Vanadia SCRF®

2016-04-05
2016-01-0914
Future heavy-duty diesel (HDD) engines are designed to have higher engine out NOx, for improved fuel economy, while reduction of the emission control technology footprint is also desired. Consequently, higher NOx reduction across compact emission control systems is required. Selective catalytic reduction (SCR) catalyst coating combined with a wall flow particulate filter (SCRF®1) is a technology that enables abatement of NOx emissions in addition to oxidation of soot from diesel engine exhausts. Vanadia based-SCR is well known for NOx reduction and is active for hydrocarbon (HC) and particulate matter (PM) oxidation. This dual functionality (oxidation and reduction reactions) of the V.SCR catalysts plus the filtration achieved by the filter substrate can help certain diesel engine applications achieve the legislative limits with a reduced packaging volume.
Technical Paper

Experimental and Modelling Study of Cold Start Effects on a Cu-Zeolite NH3 Selective Catalytic Reduction Catalyst

2015-09-01
2015-01-2011
Microreactor, engine bench tests and modelling studies have been carried out to understand the influence of cold start (low temperatures) on the performance of NH3/urea-SCR automotive exhaust aftertreatment systems. Water storage experiments using Simultaneous Thermal Analysis (STA) coupled with numerical modelling demonstrated that the exo/endo-therms associated with water adsorption and desorption at temperatures below 150°C strongly influence the catalyst temperature. Appreciable amounts of NO and NO2 could be stored on the catalyst during reactor or engine testing in the absence of any NH3 (blank tests). Modelling studies at different inlet NO2/NOx ratios demonstrated some of the influences of these surface adsorbed species on the performance of the SCR system during cold start.
X