Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Reforming Petroleum-Based Fuels for Fuel Cell Vehicles: Composition-Performance Relationships

2002-06-03
2002-01-1885
Onboard reforming of petroleum-based fuels, such as gasoline, may help ease the introduction of fuel cell vehicles to the marketplace. Although gasoline can be reformed, it is optimized to meet the demands of ICEs. This optimization includes blending to increase the octane number and addition of oxygenates and detergents to control emissions. The requirements for a fuel for onboard reforming to hydrogen are quite different than those for combustion. Factors such as octane number and flame speed are not important; however, factors such as hydrogen density, catalyst-fuel interactions, and possible catalyst poisoning become paramount. In order to identify what factors are important in a hydrocarbon fuel for reforming to hydrogen and what factors are detrimental, we have begun a program to test various components of gasoline and blends of components under autothermal reforming conditions. The results indicate that fuel composition can have a large effect on reforming behavior.
Technical Paper

Challenges in Reforming Gasoline: All Components are Not Created Equal

2001-05-07
2001-01-1915
Gasoline is a complex fuel. Many of the constituents of gasoline that are beneficial for the internal combustion engine (ICE) are expected to be challenging for on-board reformers in fuel-cell vehicles. To address these issues, the autothermal reforming of gasoline and individual components of gasoline has been investigated. The results indicate that aromatic components require higher temperatures and longer contact times to reform than paraffinic components. Napthenic components require higher temperatures to reform, but can be reformed at higher space velocities than paraffinic components. The effects of sulfur are dependent on the catalyst. These results suggest that further evolution of gasoline could reduce the demands on the reformer and provide a better fuel for a fuel-cell vehicle.
Technical Paper

Throttle and Brake Combined Control for Intelligent Vehicle Highway Systems

1995-08-01
951897
This paper summarizes the design of a throttle and brake combined controller and experimental work done for the longitudinal control of autonomous vehicles. This paper presents a sliding mode based longitudinal control law, brake system sub-model, brake control law and a throttle/brake switching algorithm. The developed control strategies were implemented on a test vehicle and the longitudinal combined controls tested with a single vehicle using a predetermined trajectory of desired speed as a function of time. These initial test results showed good tracking, good ride quality and smooth switching between throttle and brake.
X