Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Spark Ignition Engine Knock Detection Using In-Cylinder Optical Probes

1996-10-01
962103
Two types of in-cylinder optical probes were applied to a single cylinder CFR engine to detect knocking combustion. The first probe was integrated directly into the engine spark plug to monitor the radiation from burned gas in the combustion process. The second was built into a steel body and installed near the end gas region of the combustion chamber. It measured the radiant emission from the end gas in which knock originates. The measurements were centered in the near infrared region because thermal radiation from the combustion products was believed to be the main source of radiation from a spark ignition engine. As a result, ordinary photo detectors can be applied to the system to reduce its cost and complexity. It was found that the measured luminous intensity was strongly dependent upon the location of the optical sensor.
Technical Paper

Oxidation of Soot Agglomerates in a Direct Injection Diesel Engine

1992-02-01
920111
Carbon black particles, which morphologically and chemically simulate a diesel exhaust soot, were mixed with the intake air of a single-cylinder direct injection diesel engine to investigate the efficiency of their removal by oxidation in the combustion chamber. An aerosol generation system, which is capable of generating carbon black aerosol of a size distribution and mass flow rate comparable to those of the soot agglomerates, was developed first. The aerosol was then introduced into the engine which was operating on conventional fuel. Four methods were used to characterize the exhaust particles: an electrical aerosol analyzer, a condensation nuclei counter, a low volume filter, and a micro-orifice cascade impactor. The size distribution and concentration of the diesel soot particles in the lubricants were investigated by methods of photosedimentation and quantitative spectrophotometry, respectively.
Technical Paper

Size Distribution of Diesel Soot in the Lubricating Oil

1991-10-01
912344
Soot is the largest component of contaminants found in the diesel engine lubricating oil. The soot enters lubricating oil mainly through thermophoretic deposition on the cylinder wall. Although the mechanism is still not fully understood, it is generally accepted that soot particles promote engine wear, reducing engine component service life, fuel efficiency and performance. This problem will be further exacerbated when more and more diesel engines use EGR to reduce NOx emissions and when lubricating oil consumption is drastically reduced to control particulate emissions. In this study, lubricating oil samples were taken from 7 different operating diesel engines. The size distribution and concentration of the diesel soot particles in the lubricants were investigated by methods of photosedimentation and quantitative spectrophotometry. The size distributions were compared to those of soot particles in the exhaust.
X