Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Technical Paper

Fuel Additive Effects on Particulate Emissions from a Diesel Engine

1997-02-24
970181
Studies were performed with three commonly used additive metals, cerium copper, and iron, with a conventional and a low sulfur fuel in order to investigate fuel additive effects on engine particulate emissions before a particulate filter. Measurements were made on a 4 cylinder direct injection diesel engine and included total particulate mass, soluble organic fraction for both fuels, and polynuclear aromatic hydrocarbon emissions for the low sulfur fuel. The cerium based additive reduced the emissions with both fuels, with the largest effect being on the non-SOF fraction. With the other additives and the high sulfur fuel, non-SOF emissions were increased, increasing total particulate emissions. Copper was found to reduce the polynuclear aromatic hydrocarbons, and cerium was found to have the least effect. The use of an SiC wall flow filter reduced particulate and polynuclear aromatic emissions by over 90%.
Technical Paper

A New Closing Method for Wall Flow Diesel Particulate Filters

1996-02-01
960129
A new method has been developed to close the ends of a wall flow filterused for removing particulate matter from diesel engine exhaust. In thismethod, the ends of the honeycomb structure are capped by deforming andclosing the ends of the channel walls between the extrusion and firingstages of production. The method increases the amount of filtration area per filter volume for agiven cell geometry conpared to the traditional plugging method, since theentire length of the honeycomb channels is used for filtration purposes. In addition, use of the capping method has a beneficial effect on thepressure loss characteristics of a filter with a given filtration area.These benefits are illustrated through experimental results.
Technical Paper

Thermal Loading in SiC Particle Filters

1995-02-01
950151
Silicon Carbide (SiC) has been shown to have a high melting/decomposition temperature, good mechanical strength, and high thermal conductivity, which make it well suited for use as a material for diesel particulate filters. The high thermal conductivity of the material tends to reduce the temperature gradients and maximum temperature which arise during regeneration. The purpose of this paper is to experimentally investigate the thermal loading which arise under regenerations of varying severity. An experimental study is presented, in which regenerations of varying severity are conducted for uncoated SiC and Cordierite filters. The severity is varied through changes in the particle loading on the filters and by changing the flow conditions during the regeneration process itself. Temperature distributions throughout the filters are measured during these regeneration.
Technical Paper

Flow Characteristics of SiC Diesel Particulate Filter Materials

1994-03-01
940236
Recent studies have shown that SiC provides substantial advantages for use as the material for wall flow diesel particulate filters. In addition to very advantageous thermal properties, it has been shown that SiC based filter material has higher permeability than Cordierite. This paper presents a comparison of the basic flow characteristics of SiC based and Cordierite based wall flow filter material, expressed in terms of parameters which are basic materials properties that are independent of filter geometry. In addition, the flow characteristics of the particulate matter collected on the filter during engine operation are presented. The results show that the advantageous flow characteristics observed with the basic filter material are retained for loaded filters, up to very high loadings.
Technical Paper

SiC as a Substrate for Diesel Particulate Filters

1993-09-01
932495
Many of the materials which have been developed for use as particle filters in the exhaust of diesel engines have characteristics which give rise to significant problems in practical use. Due to its special characteristics, it is shown that SiC is very well suited for use as the base material for particulate filters. The physical and thermal properties of porous SiC substrate material as applied to diesel particulate filters have been determined and are presented. Experimental results from several types of filter regeneration processes in exhaust gas systems confirm the improvements in the area of thermal load and reduction in temperature level during regeneration. The reduction in temperature during regeneration is shown to be consistent with the high thermal conductivity of SiC.
X