Refine Your Search

Topic

Search Results

Book

Automotive Fuels Reference Book, Fourth Edition

2023-11-15
The earlier editions of this title have been best-selling definitive references for those needing technical information about automotive fuels. This long-awaited latest edition has been thoroughly revised and updated, yet retains the original fundamental fuels information that readers find so useful. This book is written for those with an interest in or a need to understand automotive fuels. Because automotive fuels can no longer be developed in isolation from the engines that will convert the fuel into the power necessary to drive our automobiles, knowledge of automotive fuels will also be essential to those working with automotive engines. Small quantities of fuel additives increasingly play an important role in bridging the gap that often exists between fuel that can easily be produced and fuel that is needed by the ever-more sophisticated automotive engine.
Book

Automotive Fuels Reference Book, Third Edition

2014-03-05
The first two editions of this title, published by SAE International in 1990 and 1995, have been best-selling definitive references for those needing technical information about automotive fuels. This long-awaited new edition has been thoroughly revised and updated, yet retains the original fundamental fuels information that readers find so useful. This book is written for those with an interest in or a need to understand automotive fuels. Because automotive fuels can no longer be developed in isolation from the engines that will convert the fuel into the power necessary to drive our automobiles, knowledge of automotive fuels will also be essential to those working with automotive engines. Small quantities of fuel additives increasingly play an important role in bridging the gap that often exists between fuel that can easily be produced and fuel that is needed by the ever-more sophisticated automotive engine.
Journal Article

Sodium Contamination of Diesel Fuel, its Interaction with Fuel Additives and the Resultant Effects on Filter Plugging and Injector Fouling

2013-10-14
2013-01-2687
Diesel fuel distilled from crude oil should contain no greater than trace amounts of sodium. However, fuel specifications do not include sodium; there is a limit of five parts per million for the amount of sodium plus potassium in fatty acid methyl esters (FAME) used as biodiesel. Sodium compounds are often used as the catalyst for the esterification process for producing FAME and sodium hydroxide is now commonly used in the refining process to produce ultra-low sulphur diesel (ULSD) fuel from crude oil. Good housekeeping should ensure that sodium is not present in the finished fuel. A finished fuel should not only be free of sodium but should also contain a diesel fuel additive package to ensures the fuel meets the quality standards introduced to provide reliable operation, along with the longevity of the fuel supply infrastructure and the diesel engines that ultimately burn this fuel.
Journal Article

Possible Mechanism for Poor Diesel Fuel Lubricity in the Field

2012-04-16
2012-01-0867
Traditionally, diesel fuel injection equipment (FIE) has frequently relied on the diesel fuel to lubricate the moving parts. When ultra low sulphur diesel fuel was first introduced into some European markets in the early 1980's it rapidly became apparent that the process of removing the sulphur also removed other components that had bestowed the lubricating properties of the diesel fuel. Diesel fuel pump failures became prevalent. The fuel additive industry responded quickly and diesel fuel lubricity additives were introduced to the market. The fuel, additive and FIE industries expended much time and effort to develop test methods and standards to try and ensure this problem was not repeated. Despite this, there have recently been reports of fuel reaching the end user with lubricating performance below the accepted standards.
Journal Article

Investigations on Deposit Formation in the Holes of Diesel Injector Nozzles

2011-08-30
2011-01-1924
Current developments in fuels and emissions regulations are resulting in an increasingly severe operating environment for diesel fuel injection systems. The formation of deposits within the holes or on the outside of the injector nozzle can affect the overall system performance. The rate of deposit formation is affected by a number of parameters, including operating conditions and fuel composition. For the work reported here an accelerated test procedure was developed to evaluate the relative importance of some of these parameters in a high pressure common rail fuel injection system. The resulting methodology produced measurable deposits in a custom-made injector nozzle on a single-cylinder engine. The results indicate that fuels containing 30%v/v and 100% Fatty Acid Methyl Ester (FAME) that does not meet EN 14214 produced more deposit than an EN590 petroleum diesel fuel.
Technical Paper

An Investigation Into Transient Diesel Spray Development Using High Speed Imaging In A Novel Optical Pressure Chamber

2011-08-30
2011-01-1836
The fuel economy and emissions performance of a Diesel engine is strongly influenced by the fuel injection process. This paper presents early results of an experimental investigation into diesel spray development carried out in a novel in-house developed optical pressure chamber capable of operating at pressure up to 50 bar and temperatures up to 900 K. The spatial evolution of a diesel spray tends to experience many transitory macroscopic phenomena that directly influence the mixing process. These phenomena are not considered highly reproducible and are extremely short lived, hence recording and understanding these transient effects is difficult. In this study, high-speed backlight-illuminated imaging has been employed in order to capture the transient dynamics of a short signal duration diesel spray injected into incremental back pressures and temperatures reaching a maximum of 10 bar and 473 K respectively.
Technical Paper

Insights into Deposit Formation in High Pressure Diesel Fuel Injection Equipment

2010-10-25
2010-01-2243
The need to meet the US 2007 emissions legislation has necessitated a change in Diesel engine technology, particularly to the fuel injection equipment (FIE). At the same time as these engine technology changes, legislation has dictated a reduction in fuel sulphur levels and there has also been increased use of fatty acid methyl esters (FAME) or biodiesel as a fuel blending component. The combination of changes to the engine and the fuel has apparently led to a sharp rise in the number of reports of field problems resulting from deposits within the FIE. The problem is usually manifested as a significant loss of power or the engine failing to start. These symptoms are often due to deposits to be found within the fuel injectors or to severe fouling of the fuel filter. The characteristics of the deposits found within different parts of the fuel system can be noticeably different.
Journal Article

Temperature Programmed Oxidation as a Technique for Understanding Diesel Fuel System Deposits

2010-05-05
2010-01-1475
The fuel injection equipment (FIE) has always been paramount to the performance of the Diesel engine. Increasingly stringent emissions regulations have dictated that the FIE becomes more precise and sophisticated. The latest generation FIE is therefore less tolerant to deposit formation than its less finely engineered predecessors. However, the latest emissions regulations make it increasingly difficult for engine manufacturers to comply without the use of exhaust aftertreatment. This aftertreatment often relies on catalytic processes that can be impaired by non-CHON (carbon, hydrogen, oxygen and nitrogen) components within the fuel. Fuel producers have therefore also been obliged to make major changes to try and ensure that with the latest technology engines and aftertreatment systems the fuel is still fit for purpose. However, there has recently been a significant increase in the incidence of reported problems due to deposit build-up within vehicle fuel systems.
Journal Article

A Novel Technique for Investigating the Nature and Origins of Deposits Formed in High Pressure Fuel Injection Equipment

2009-11-02
2009-01-2637
Recent developments in diesel fuel injection equipment coupled with moves to using ULSD and biodiesel blends has seen an increase in the number of reports, from both engine manufacturers and fleet operators, regarding fuel system deposit issues. Preliminary work performed to characterise these deposits showed them to be complicated mixtures, predominantly carbon like but also containing other possible carbon precursor materials. This paper describes the application of the combination of hydropyrolysis, gas chromatography and mass spectrometry to the analysis of these deposits. It also discusses the insights that such analysis can bring to the constitution and origin of these deposits.
Journal Article

Effect of Multifunctional Fuel Additive Package on Fuel Injector Deposit, Combustion and Emissions using Pure Rape Seed Oil for a DI Diesel

2009-11-02
2009-01-2642
This work investigates the effect of a multifunctional diesel fuel additive package used with RapeSeed Oil (RSO) as a fuel in a DI heavy duty diesel engine. The effects on fuel injectors’ cleanliness were assessed. The aim was to maintain combustion performance and preventing the deterioration of exhaust emissions associated with injector deposit build up. Two scenarios were investigated: the effect of deposit clean-up by a high dose of the additive package; and the effect of deposit prevention using a moderate dose of the additive package. Engine combustion performance and emissions were compared for each case against use of RSO without any additive. The engine used was a 6 cylinder, turbocharged, intercooled Perkins Phaser Engine, fitted with an oxidation catalyst and meeting the Euro II emissions limits. The tests were conducted under steady state conditions of 23kW and 47kW power output at an engine speed of 1500 rpm.
Technical Paper

Possible Influence of High Injection Pressure on Diesel Fuel Stability: A Review and Preliminary Study

2009-06-15
2009-01-1878
Recent developments in diesel engines and fuel injection equipment combined with the change to ULSD and bio-blends have resulted in increased reports regarding deposits within injectors and filters. A review of known fuel degradation mechanisms and other relevant chemistries suggests the effects of high pressure and high shear environments should be examined as the most probable causes of increasing deposit formation. Existing fuel quality tests do not correlate with reported fouling propensity. Analytical studies have shown that there are only subtle chemical changes for the materials within the standard diesel boiling range. The implications for further scientific study are discussed.
Journal Article

Influence of High Injection Pressure on Diesel Fuel Stability: A Study of Resultant Deposits

2009-06-15
2009-01-1877
Recent developments in diesel engines and fuel injection equipment together with the move to ULSD and bio-blends have seen an increase in reports regarding deposits in both injectors and filters. Historically deposits have been generated from a number of sources: bio-contamination, both aerobic and non-aerobic, water contamination, lube oil adulteration, additives, dirt, metals in fuel, and biodiesel degradation. These may be ascribed to “poor housekeeping,” incorrect additivation, deliberate adulteration or some combination. However the recently observed deposits differ from these. The deposits are described and indicate possible precursor molecules that support proposed mechanisms and their ability to form filter deposits.
Technical Paper

A Study of the Parameters Ensuring Reliable Regeneration of a Sintered Metal Particulate Filter using a Fuel Borne Catalyst

2008-10-06
2008-01-2485
The operating cycle of many vehicles fitted with diesel particulate filters is such that soot accumulates within the filter and must periodically be oxidised. Work was carried out on a passenger car engine to elucidate how fuel borne catalyst (FBC) to soot ratio, oxygen mass flow rate, temperature and soot loading influence the oxidation rate of soot accumulated in a sintered metal filter (SMF). Results show that soot loading had a major influence; increased soot loading increased the oxidation rate. The other parameter had a smaller influence with increasing oxygen flow rate and FBC/soot ratio each increasing the oxidation rate.
Technical Paper

Deposit Formation in the Holes of Diesel Injector Nozzles: A Critical Review

2008-10-06
2008-01-2383
Current developments in fuels and emissions regulations are resulting in increasingly severe operating environment for the injection system. Formation of deposits within the holes of the injector nozzle or on the outside of the injector tip may have an adverse effect on overall system performance. This paper provides a critical review of the current understanding of the main factors affecting deposit formation. Two main types of engine test cycles, which attempt to simulate field conditions, are described in the literature. The first type involves cycling between high and low load. The second involves steady state operation at constant speed either at medium or high load. A number of influences on the creation of deposits are identified. This includes fouling through thermal condensation and cracking reactions at nozzle temperatures of around 300°C. Also the design of the injector holes is an influence, because it can influence cavitation.
Technical Paper

The Emerging Market for Biodiesel and the Role of Fuel Additives

2007-07-23
2007-01-2033
With growing concern over greenhouse gases there is increasing emphasis on reducing CO2 emissions. Despite engine efficiency improvements plus increased dieselisation of the fleet, increasing vehicle numbers results in increasing CO2 emissions. To reverse this trend the fuel source must be changed to renewable fuels which are CO2 neutral. A common route towards this goal is to substitute diesel fuel with esterified seed oils, collectively known as Fatty Acid Methyl Esters. However a fundamental change to the fuel chemistry produces new challenges in ensuring compatibility between fuel and engine performance/durability. This paper discusses the global situation and shows how fuel additives can overcome the challenges presented by the use of biodiesel.
Technical Paper

Metal Emissions, NO2 and HC Reduction from a Base Metal Catalysed DPF/FBC System

2006-04-03
2006-01-0420
Due to concerns over NO2 emissions from platinum catalysts a base metal catalysed diesel particulate filter (DPF) has been developed and used in combination with fuel borne catalysts (FBC). Results are presented showing reductions in HC, NOX, NO2, and PAH emissions along with an assessment of the emissions of metals used in the FBC and the catalysed DPF. This data is used to show the likely reduction in overall iron and other metal emissions as a result of using the catalysed DPF/FBC system. A similar system has also been assessed for durability for over 2000 hours when fitted to a bus in regular service in Switzerland.
Technical Paper

Practical Experience of Fitting DPFs to Buses in Chile

2005-05-11
2005-01-2146
Continuing research into the effect of vehicle emissions is driving legislation, which is increasingly being enacted to encourage the retrofitting of emissions control devices. Of particular concern are emissions of diesel particulate matter and nitrogen oxides. More recently the adverse effects of nitrogen dioxide in particular, have been highlighted. A programme of work is underway in Santiago to demonstrate the suitability of retrofitting diesel particulate filters (DPF) to urban buses. This paper presents data, including regulated and unregulated emissions, from a bus fitted with a DPF that relies on a fuel borne catalyst (FBC) to facilitate regeneration of the DPF.
Technical Paper

Service Application of a Novel Fuel Borne Catalyst Dosing System for DPF Retrofit

2005-04-11
2005-01-0669
A dosing system has been developed to facilitate the addition of a fuel borne catalyst (FBC) to a vehicle's fuel supply. The on-board dosing system was primarily designed to reduce cost and complexity. One embodiment of the design provided an additional benefit, namely the automatic adjustment of treat rate according to duty cycle. For high duty operating cycles where average exhaust gas temperatures are high, a low treat rate of FBC is supplied. Conversely at low duty where the exhaust temperature is lower, a higher treat of FBC is delivered. Data from field applications are presented to demonstrate this feature.
Technical Paper

Retrofitting TRU-Diesel Engines with DPF-Systems Using FBC and Intake Throttling for Active Regeneration

2005-04-11
2005-01-0662
Transport Refrigeration Units (TRU) powered by small diesel engines emit high PM and cause locally high PM levels. The concomitant health risks spurred efforts to devise a cost-effective curtailment of these emissions. Diesel particulate filters (DPF) of ceramic honeycomb construction very efficiently trap PM emissions, even ultrafines in the lung penetrating size range of below 300 nm. A fuel borne catalyst (FBC) can facilitate trap regeneration, by lowering the exhaust temperature requirements, but cannot alone guarantee reliable regeneration under all operating conditions of the TRU. A Swiss development team together with industrial partners therefore developed a fully automatic active regeneration system for the California Air Resources Board.
Technical Paper

DPF Technology for Older Vehicles and High Sulphur Fuel

2005-01-19
2005-26-020
The most cost-effective way to reduce the level of diesel particulate emissions is to retrofit exhaust aftertreatment devices. While diesel oxidation catalysts will reduce the mass of particles emitted, they will not significantly reduce the number of ultrafine particles, that are considered the most harmful to health. Diesel Particulate Filters (DPFs) are therefore considered the most effective retrofit devices. One obstacle to the widespread adoption of DPFs is that many DPF technologies require low sulphur fuel. Using a Fuel Borne Catalyst (FBC) to facilitate regeneration of the DPF allows a sulphur tolerant DPF system to be produced.
X