Refine Your Search

Topic

Search Results

Author:
Viewing 1 to 13 of 13
Technical Paper

Hydrogen ICE Combustion Challenges

2023-08-28
2023-24-0077
Hydrogen promises to provide some highly desired features for clean and efficient combustion, but harvesting efficiency and emission potentials as well as meeting engine durability requirements needs careful adaption of both, combustion system components and engine operation strategies. Key points for H2-ICE combustion are some specific and unique features of H2/air mixtures, among which – to name only a few – excellent dilutability, lean burn capability, low ignition energy and high molecular diffusivity and their consequences on ICE operation do play prominent roles. H2 admission via port or direct injection, compression ratio selection and injection timing provide a set of parameters to control combustion features.
Technical Paper

The Hybrid IC Engine – Challenges of Hydrogen and E-Fuel Compatibility within Current Production Boundaries

2023-04-11
2023-01-0397
Increasingly stringent greenhouse gas and emission limits demand for powertrain electrification throughout all vehicle applications. Beside fully electric powertrains different configurations of hybrid powertrains will have an important role in upcoming and future vehicle generations. As already discussed in previous papers, the requirements on the combustion engine in hybrid powertrains are different to those in a conventional powertrain solution, heading for brake thermal efficiency targets of 45% and above within the product lifecycle for conventional fuels. Focus on product cost and production and assembly facility investment drives reuse of technology packages within modular powertrain technology platforms, with different combinations of internal combustion engines (ICE), transmissions, and e-drive-layouts. The goal of zero carbon operation requires compatibility of ICE for sustainable fuels.
Technical Paper

The Hybrid Engine - Challenge between GHG-Legislation, Efficiency Targets, Product Cost and Production Boundaries

2022-03-29
2022-01-0593
Upcoming, increasingly stringent greenhouse gas (GHG) as well as emission limits demand for powertrain electrification throughout all vehicle applications. Increasing complexity of electrified powertrain architectures require an overall system approach combining component technology with integration and industrialization requirements when heading for further significant efficiency optimization of the subsystem internal combustion engine. The requirements on the combustion engine in hybrid powertrains are quite different to those in a conventional powertrain solution. Next-generation hybrid engines, with brake thermal efficiency (BTE) targets starting from 42-43% and aiming for 45% and above within the product lifecycle, require a re-thinking of the base engine architecture of current modular engine platforms. At the same time focus on the product cost and minimized additional investment demand reuse of current production, machining and assembly facilities as far as possible.
Technical Paper

A Modular Gasoline Engine Family for Hybrid Powertrains: Balancing Cost and Efficiency Optimization

2020-04-14
2020-01-0839
The electrification of the powertrain is a prerequisite to meet future fuel consumption limits, while the internal combustion engine (ICE) will remain a key element of most production volume relevant powertrain concepts. High volume applications will be covered by electrified powertrains. The range will include parallel hybrids, 48V- or High voltage Mild- or Full hybrids, up to Serial hybrids. In the first configurations the ICE is the main propulsion, requiring the whole engine speed and load range including the transient operation. At serial hybrid applications the vehicle is generally electrically driven, the ICE provides power to drive the generator, either exclusively or supporting a battery charging concept. As the ICE is not mechanically coupled to the drive train, a reduction of the operating range and thus a partial simplification of the ICE is achievable.
Technical Paper

Development of New I3 1.0L Turbocharged DI Gasoline Engine

2017-10-08
2017-01-2424
In recent years, more attentions have been paid to stringent legislations on fuel consumption and emissions. Turbocharged downsized gasoline direct injection (DI) engines are playing an increasing important role in OEM’s powertrain strategies and engine product portfolio. Dongfeng Motor (DFM) has developed a new 1.0 liter 3-cylinder Turbocharged gasoline DI (TGDI) engine (hereinafter referred to as C10TD) to meet the requirements of China 4th stage fuel consumption regulations and the China 6 emission standards. In this paper, the concept of the C10TD engine is explained to meet the powerful performance (torque 190Nm/1500-4500rpm and power 95kW/5500rpm), excellent part-load BSFC and NVH targets to ensure the drivers could enjoy the powerful output in quiet and comfortable environment without concerns about the fuel cost and pollution.
Technical Paper

Influence of Different Oil Properties on Low-Speed Pre-Ignition in Turbocharged Direct Injection Spark Ignition Engines

2016-04-05
2016-01-0718
In recent years concern has arisen over a new combustion anomaly, which was not commonly associated with naturally aspirated engines. This phenomenon referred to as Low-Speed Pre-Ignition (LSPI), which often leads to potentially damaging peak cylinder pressures, is the most important factor limiting further downsizing and the potential CO2 benefits that it could bring. Previous studies have identified several potential triggers for pre-ignition where engine oil seems to have an important influence. Many studies [1], [2] have reported that detached oil droplets from the piston crevice volume lead to auto-ignition prior to spark ignition. Furthermore, wall wetting and subsequently oil dilution [3] and changes in the oil properties by impinging fuel on the cylinder wall seem to have a significant influence in terms of accumulation and detachment of oil-fuel droplets in the combustion chamber.
Journal Article

EU6c Particle Number on a Full Size SUV - Engine Out or GPF?

2014-10-13
2014-01-2848
This paper describes the findings of a design, simulation and test study into how to reduce particulate number (Pn) emissions in order to meet EU6c legislative limits. The objective of the study was to evaluate the Pn potential of a modern 6-cylinder engine with respect to hardware and calibration when fitted to a full size SUV. Having understood this capability, to redesign the combustion system and optimise the calibration in order to meet an engineering target value of 3×1011 Pn #/km using the NEDC drive cycle. The design and simulation tasks were conducted by JLR with support from AVL. The calibration and all of the vehicle testing was conducted by AVL, in Graz. Extensive design and CFD work was conducted to refine the inlet port, piston crown and injector spray pattern in order to reduce surface wetting and improve air to fuel mixing homogeneity. The design and CFD steps are detailed along with the results compared to target.
Technical Paper

Technology Features and Development Methods for Spark Ignited Powertrain to Meet 2020 CO2 Emission Targets

2013-10-07
2013-36-0438
For achieving the forthcoming CO2 emission targets of 95g/km by 2020 and for the years beyond, comprehensive activities for powertrain technology as well as development methodology has to be utilized. It will by far not be enough to add a few single technology features to achieve the desired result. More and more the success will result from comprehensive combining of synergetic utilization of complementary effects. This will be the powertrain perfectly matched to the vehicle, including the energy source, and all together integrated by means of advanced development tools and methodology.
Journal Article

Measures to Reduce Particulate Emissions from Gasoline DI engines

2011-04-12
2011-01-1219
Particulate emission reduction has long been a challenge for diesel engines as the diesel diffusion combustion process can generate high levels of soot which is one of the main constituents of particulate matter. Gasoline engines use a pre-mixed combustion process which produces negligible levels of soot, so particulate emissions have not been an issue for gasoline engines, particularly with modern port fuel injected (PFI) engines which provide excellent mixture quality. Future European and US emissions standards will include more stringent particulate limits for gasoline engines to protect against increases in airborne particulate levels due to the more widespread use of gasoline direct injection (GDI). While GDI engines are typically more efficient than PFI engines, they emit higher particulate levels, but still meet the current particulate standards.
Technical Paper

The Interaction Between Diesel Fuel Density and Electronic Engine Management Systems

1996-10-01
961975
The influence of fuel density on exhaust emissions from diesel engines has been investigated in a number of studies and these have generally concluded that particulate emissions rise with increasing density This paper reviews recent work in this area, including the European Programme on Emissions, Fuels and Engine Technologies (EPEFE) and reports on a complementary study conducted by CONCAWE, in cooperation with AVL List GmbH The project was carried out with a passenger car equipped with an advanced technology high speed direct injection turbocharged / intercooled diesel engine fitted with a complex engine management system which was referenced to a specific fuel density This production model featured electronic diesel control, closed loop exhaust gas recirculation and an exhaust oxidation catalyst Tests were carried out with two EPEFE fuels which excluded the influence of key fuel properties other than density (828 8 and 855 1 kg/m3) Engine operation was adjusted for changes in fuel density by resetting the electronic programmable, read-only memory to obtain the same energy output from the two test fuels In chassis dynamometer tests over the ECE15 + EUDC test cycle the major impact of fuel density on particulate emissions for advanced engine technology/engine management systems was established A large proportion of the density effect on particulate and NOx emissions was due to physical interaction between fuel density and the electronic engine management system Limited bench engine testing of the basic engine showed that nearly complete compensation of the density effect on smoke (particulate) emissions could be achieved when no advanced technology was applied
Technical Paper

Development of Fuel Injection Equipment and Combustion System for DI Diesels Operated on Dimethyl Ether

1995-02-01
950062
The paper describes basic investigations towards identifying optimum specifications of fuel injection and combustion system parameters for a new alternative fuel, Dimethylether (DME), allowing liquid direct injection, compression ignition and smokeless combustion. Special emphasis is drawn on fuel injection equipment (FIE) parameter optimization using new development tools such as simulation techniques of the fuel system hydraulics and numerical identification methods to determine sofar unknown fuel data and flow phenomena of the new alternative fuel. Combustion system parameters are analyzed on a single cylinder test engine with respect to efficiency, gaseous emissions, and noise. Due to the particular properties of the fuel the engine parameter optimization was concentrated on new directions of system development thus allowing new solutions for FIE and combustion system, as described in this paper.
Technical Paper

Cold Start Performance Comparison of Alcohol Fueled Engines with In-Cylinder and Port Fuel Injection

1992-02-01
920003
This paper deals with development and optimization of combustion process, cold start system and exhaust after-treatment carried out on the steady state and transient test bed as well as with vehicle development on chassis dynamometer and on the road at standard ambient temperatures and under cold conditions of a) SPFI or MPFI-SI engine with catalyst (closed loop), neat ethanol fuelled, compared to b) glow plug assisted direct injection methanol engine equipped with oxidation catalyst. The main emphasis is laid on the optimization of the cold start behaviour with and w/o catalyst in order to obtain low emissions, primarily during the first phase of the FTP 75 cycle. The emission results show that with both engine types the achievement of US-1994 limits will be possible, including a very low aldehyde emission.
Technical Paper

Development and Optimization of Methanol Fueled Compression Ignition Engines for Passenger Cars and Light Duty Trucks

1991-02-01
910851
The paper describes the development of methanol fueled engines for passenger cars and light duty trucks working both on the compression ignition and glow plug assisted ignition principle. Special emphasis was laid on development and optimization of the combustion process for both the glow plug assisted and the compression ignition system, the application of the engine management system and the development of the exhaust after-treatment under steady state conditions on the engine dynamometer. The transient engine development in the test car was carried out on chassis dynamometer and under road conditions. The glow plug assisted direct injection methanol engine was in addition equipped with oxidation catalysts for this development program.
X