Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Emissions Response of a European Specification Direct-Injection Gasoline Vehicle to a Fuels Matrix Incorporating Independent Variations in Both Compositional and Distillation Parameters

1999-10-25
1999-01-3663
An emissions programme has been undertaken to gain information on the effect of selected fuel parameters on gasoline direct injection (G-DI) vehicle technology(1) with respect to exhaust emissions. Seven fuel parameters, namely aromatic, methyl-tertiary-butyl ether (MTBE), sulphur and olefin content as well as 3 distillation parameters covering the whole boiling range, were independently investigated. It was found that, overall, the fuel effects on regulated (THC, CO, NOx), particulate (Pm), and CO2 emissions were relatively small.
Technical Paper

Contribution of Oil Layer Mechanism to the Hydrocarbon Emissions from Spark-Ignition Engines

1997-10-01
972892
A research program designed to measure the contribution from fuel absorption in the thin layer of oil, lubricating the cylinder liner, to the total and speciated HC emissions from a spark ignition engine has been performed. The logic of the experiment design was to test the oil layer mechanism via variations in the oil layer thickness (through the lubricant formulations), solubility of the fuel components in the lubricants, and variations in the crankcase gas phase HC concentration (through crankcase purging). A set of preliminary experiments were carried out to determine the solubility and diffusivity of the fuel components in the individual lubricants. Engine tests showed similar HC emissions among the tested lubricants. No consistent increase was observed with oil viscosity (oil film thickness), contrary to what would be expected if fuel-oil absorption was contributing significantly to engine-out HC. Similarly, no effect of crankcase purging could be observed.
Technical Paper

The Effect of Lubricant Composition on Vehicle Exhaust Emissions

1997-10-01
972930
The effect of lubricant composition on vehicle exhaust emissions has been investigated. Emissions from two vehicles were measured when lubricated with four different crankcase lubricants. All emissions tests were performed with California Phase II gasoline over the FTP-75 cycle. The lubricants tested were a conventional mineral oil based lubricant, poly-alpha olefin (PAO) based lubricant, hydrocracked based lubricant and a Volvo first fill lubricant. The first three lubricants were designed to have similar high temperature viscosities whilst using the same additive package. This meant that there were some small differences in the low temperature viscosities. This resulted in the two mineral oil based lubricants being 10W-30 grades and the PAO and hydrocracked based lubricants being 5W-30 grades. The two test vehicles used were both Volvo 850 vehicles, however one was a European specification vehicle and the other a Californian TLEV.
X