Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Biofidelity of THOR 5th Percentile Female ATD in Ankle Eversion and Inversion

2020-04-14
2020-01-0528
Females have higher frequency and risk of foot and ankle injuries in motor vehicle collisions than similar-sized males. Therefore, lower extremity biofidelity and accurate injury prediction of female ATDs is critical. This paper aims to compare the THOR 5th percentile female (THOR-05F) anthropomorphic test device (ATD) response with male and female PMHS data of various sizes under ankle inversion and eversion. The THOR-05F lower extremity was subjected to dynamic inversion and eversion ankle loading with a constant 2000N axial force applied through the tibia. Twelve THOR-05F tests (3 inversion and 3 eversion on both, left and right legs) were performed with boundary conditions consistent with previous post-mortem human subject (PMHS) lower extremity tests.
Technical Paper

Analysis of Vehicle Kinematics, Injuries and Restraints in DRoTS Tests to Match Unconstrained Rollover Crashes

2016-04-05
2016-01-1518
Multiple laboratory dynamic test methods have been developed to evaluate vehicle crashworthiness in rollover crashes. However, dynamic test methods remove some of the characteristics of actual crashes in order to control testing variables. These simplifications to the test make it difficult to compare laboratory tests to crashes. One dynamic method for evaluating vehicle rollover crashworthiness is the Dynamic Rollover Test System (DRoTS), which simulates translational motion with a moving road surface and constrains the vehicle roll axis to a fixed plane within the laboratory. In this study, five DRoTS vehicle tests were performed and compared to a pair of unconstrained steering-induced rollover tests. The kinematic state of the unconstrained vehicles at the initiation of vehicle-to-ground contact was determined using instrumentation and touchdown parameters were matched in the DRoTS tests.
Technical Paper

Recreational Off-Highway Vehicle Safety: Countermeasures for Ejection Mitigation in Rollover

2016-04-05
2016-01-1513
Recreational Off-Highway Vehicles (ROVs), since their introduction onto the market in the late-1990s, have been related to over 300 fatalities with the majority occurring in vehicle rollover. In recent years several organizations made attempts to improve ROV safety. This paper is intended to evaluate ejection mitigation measures considered by the ROV manufacturers. Evaluated countermeasures include two types of occupant restraints (three and four point) and two structural barriers (torso bar, door with net). The Rollover protection structure (ROPS) provided by the manufacturer was attached to a Dynamic Rollover Test System (DRoTS), and a full factorial series of roll/drop/catch tests was performed. The ROV buck was equipped with two Hybrid III dummies, a 5th percentile female and a 95th percentile male. Additionally, occupant and vehicle kinematics were recorded using optoelectronic stereophotogrammetric camera system.
Technical Paper

Occupant Kinematics in Laboratory Rollover Tests: ATD Response and Biofidelity

2014-11-10
2014-22-0012
Rollover crashes are a serious public health problem in United States, with one third of traffic fatalities occurring in crashes where rollover occurred. While it has been shown that occupant kinematics affect the injury risk in rollover crashes, no anthropomorphic test device (ATD) has yet demonstrated kinematic biofidelity in rollover crashes. Therefore, the primary goal of this study was to assess the kinematic response biofidelity of six ATDs (Hybrid III, Hybrid III Pedestrian, Hybrid III with Pedestrian Pelvis, WorldSID, Polar II and THOR) by comparing them to post mortem human surrogate (PMHS) kinematic response targets published concurrently; and the secondary goal was to evaluate and compare the kinematic response differences among these ATDs.
Technical Paper

Occupant Kinematics in Laboratory Rollover Tests: PMHS Response

2014-11-10
2014-22-0011
The objective of the current study was to characterize the whole-body kinematic response of restrained PMHS in controlled laboratory rollover tests. A dynamic rollover test system (DRoTS) and a parametric vehicle buck were used to conduct 36 rollover tests on four adult male PMHS with varied test conditions to study occupant kinematics during the rollover event. The DRoTS was used to drop/catch and rotate the test buck, which replicated the occupant compartment of a typical mid-sized SUV, around its center of gravity without roof-to-ground contact. The studied test conditions included a quasi-static inversion (4 tests), an inverted drop and catch that produced a 3 g vertical deceleration (4 tests), a pure dynamic roll at 360 degrees/second (11 tests), and a roll with a superimposed drop and catch produced vertical deceleration (17 tests). Each PMHS was restrained with a three-point belt and was tested in both leading-side and trailing-side front-row seating positions.
Technical Paper

Test Methodology and Initial Results from a Dynamic Rollover Test System

2013-04-08
2013-01-0468
The goal of this study is to present the methods employed and results obtained during the first six tests performed with a new dynamic rollover test system. The tests were performed to develop and refine test methodology and instrumentation methods, examine the potential for variation in test parameters, evaluate how accurately actual touchdown test parameters could be specified, and identify problems or limitations of the test fixture. Five vehicles ranging in size and inertia from a 2011 Toyota Yaris (1174 kg, 379 kg m₂) to a 2002 Ford Explorer (2408 kg, 800 kg m₂) were tested. Vehicle kinematic parameters at the instant of vehicle-to-road contact varied across the tests: roll rates of 211-268 deg/s, roll angles of 133-199 deg, pitch angles of -12 deg to 0 deg, vertical impact velocities of 1.7 to 2.7 m/s, and road velocities of 3.0-8.8 m/s.
X