Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A/F Ratio Visualization in a Diesel Spray

1994-03-01
940680
We have applied an imaging system to a spray in an engine-fed combustion bomb to investigate some of the features of diesel spray ignition. A high pressure electronic unit injector with main and pilot injection features was used. Our interest in this work was the local air/fuel ratio, particularly in the vicinity of the spray plumes. The measurement was made by seeding the air in the intake manifold with biacetyl. A tripled ND:YAG laser causes the biacetyl to fluoresce with a signal that is proportional to its local concentration. The biacetyl partial pressure was carefully controlled, enabling approximate estimates of the local stoichiometry in the fuel spray. Twenty-four different cases were sampled. Parameters varied include swirl ratio, fuel quantity, number of holes in the fuel nozzle and distribution of fuel quantities in the pilot and main injections. This paper presents the results of three of these cases.
Technical Paper

Intake Valve Flow Measurements Using PIV

1993-10-01
932700
Intake valve flow patterns have been measured quantitatively using particle image velocimetry (PIV) for a commercial 4-valve diesel cylinder head and valve system. The measurements have been made for low (600 engine RPM) and higher (1000 engine RPM) speeds, and at several planes in the valve curtain area. The measurements involve double exposure photography of laser light scattered by seed particles (≅1 μm) from a laser light sheet (≅ 0.5 mm by 50 mm) through an imaging system onto silver halide film. Subsequent processing produces the local particle displacement between the two exposures. Combined with the known time interval between exposures, the displacement information can produce velocity vectors at many locations in the field of view. The results of the experiments are shown as vector plots for each operating condition. In the plane of the illuminating laser sheet, velocity vectors representing local gas velocity are produced.
Technical Paper

Heat Transfer Measurements in a Motored Engine

1989-02-01
890319
A set of experiments has been performed on a motored four stroke engine measuring the gas phase thermal boundary layer profile adjacent to the cylinder head using speckle interferometry. Speckle interferometry is an optical technique which allows full field, line of sight averaged optical phase shift measurements. These optical phase shift measurements may be interpreted as local temperature values for planar or axisymmetric geometries with ideal gases. For this set of experiments, a small (20 mm diameter) portion of the cylinder head was raised 2 mm above the rest of the surface and used as a test surface. The experiments were performed at two engine speeds, 300 and 750 RPM and at low and high intake swirl levels. Interferograms were obtained at 10 crank angle degree intervals from 70° before top dead center of compression to 60° after top dead center of compression.
X