Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Effects of Notches on Surface Pressure Fluctuations Downstream of a Leading Edge Spoiler

2009-05-19
2009-01-2238
Notched spoilers have been observed to be more effective than uniform spoilers to suppress the flow-induced cavity resonance of vehicles with open sunroofs. In this study, a few mechanisms possibly involved in buffeting suppression from notched spoilers were investigated experimentally and numerically. One objective was to investigate the spatial coherence and phase of the wall pressure fluctuations downstream of notched spoilers in comparison with the same quantities for uniform spoilers. Another objective was to gather detailed measured data to allow the verification of computer simulations of the flow over the notched spoiler. Experiments were performed to measure the velocity and wall pressure fields downstream of spoilers mounted on the rigid floor of a closed test section wind tunnel for different spoiler heights. Efforts were made to reproduce the spoiler and wind tunnel geometry and boundary conditions of the experimental set-up in the numerical simulations.
Technical Paper

Surface Pressure Fluctuations in Separated-Reattached Flows Behind Notched Spoilers

2007-05-15
2007-01-2399
Notched spoilers may be used to suppress flow-induced cavity resonance in vehicles with open sunroofs or side windows. The notches are believed to generate streamwise vortices that break down the structure of the leading edge cross-stream vortices predominantly responsible for the cavity excitation. The objectives of the present study were to gain a better understanding of the buffeting suppression mechanisms associated with notched spoilers, and to gather data for computational model verification. To this end, experiments were performed to characterize the surface pressure field downstream of straight and notched spoilers mounted on a rigid wall to observe the effects of the notches on the static and dynamic wall pressure. Detailed flow velocity measurements were made using hot-wire anemometry. The results indicated that the presence of notches on the spoiler reduces drag, and thus tends to move the flow reattachment location closer to the spoiler.
X