Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

The Influence of Speciated Diesel Fuel Composition on Speciated Particulate SOF Emissions

1998-02-23
980527
A base diesel fuel with 37% 1-3 ring aromatics and 12.9% PAH was passed through a dearomatising process that removed the two and three ring aromatics and reduced the single ring aromatics to 14%. These two fuels plus a combination of 60% of the original fuel with 40% of the low aromatic fuel were tested on a Perkins Phaser TCIC diesel engine of US 1991 emissions standards over the EC 13 mode cycle. The fuels and particulate SOF were analysed for all the n-alkanes and all of the PAH of significant concentration. The high speed maximum power particulate SOF were analysed in detail for all three fuels and mass emissions of 15 n-alkanes and 15 PAH determined and 15 other non-fuel PAH searched for. Most of the results showed that the composition of the SOF in terms of n-alkane and PAH was predominantly unburnt fuel compounds, the fuel with negligible PAH had very low PAH emissions compared with the parent fuel with a high PAH content.
Technical Paper

Pyrosynthesis of PAH in a Modern IDI Diesel Engine

1996-05-01
961230
N-hexadecane, kerosene and diesel fuels were used for powering a new IDI diesel engine in order to elucidate the role of in-cylinder pyrosynthesis of PAH in diesel emissions. The present work is a complementary to previous investigations (1,2,3) where exhaust deposits have contributed to and interfered with the results. This was eliminated by using a brand new deposit-free engine. Nonetheless, high levels of PAH were detected in the exhaust even with the PAH free fuels. This was attributable to the high rates of lube oil consumption during the running-in period of this engine. The fuel PAH were also shown to play a significant role in the total emissions of these species in diesel combustion.
Technical Paper

Characterization of Diesel Particulate Emissions of Two IDI Diesel Engines Using Diesel and Kerosene Fuels

1996-05-01
961231
An old single cylinder Petter AA1 and a new four cylinder Ford 1.61 engines were operated over a wide range of steady state conditions using kerosene and diesel fuels. The two engines exhibited different trends in forming the particulate emissions. For both fuels the particulate emissions were dominated by the carbon for the old engine, and by the SOF for the new engine where the latter was characterized by its low level of emissions. The engine operating conditions also influenced the emissions of the different particulate fractions. Generally, the old engine had higher unburnt lube oil emissions as well as high survival of diesel n-alkanes and PAH in the emissions. However, in the case of kerosene and the new engine when operated both with kerosene and diesel fuel, the pyrosynthesis of these compounds was evident. Sulphates in the particulates, which originated mainly in the fuel, were shown to incorporate low levels of background from the engine deposits and the lubricating oil.
Technical Paper

The Influence of Lubricating Oil Age on Emissions from an IDI Diesel

1993-03-01
931003
A small 0.220 litre Petter IDI single cylinder engine was investigated over a 120 hour test period, consisting of 40 three hour test runs, with emission measurements and lubricating oil analysis every 20 hours for the same batch of fuel and lubrication oil. The particulates were analysed for the SOF and for the fuel/lubricant proportion using TGA. Fuel dilution of the lubricating oil was shown to increase uniformly with time and reached 10% after 120 hours, there was an associated decrease in the viscosity and increase in the lube oil fraction in the particulate SOF. Carbon contamination of the lubricating oil increased to 1.6% by mass over the 120 hour test period. The particulate emissions decreased initially and then increased after 50 hours, but the effect was no more than a 30% variation, mainly caused by variations in the carbon emissions. The motoring particulates were found to be low and dominated by vaporised lubricating oil.
Technical Paper

The Role of Exhaust Pipe and Incylinder Deposits on Diesel Particulate Composition

1992-09-01
921648
Diesel engine exhaust pipe and incylinder deposits were analysed for the global fuel, lube oil, carbon and ash fractions for a range of diesel engines. A large SOF fraction, typically 30%, was found and this was dominated by lubricating oil. These deposits are shown to contain significant levels of PAH and hence provide a source of diesel PAH emissions and possible sites for incylinder pyrosynthesis of high molecular weight PAH. A Perkins 4-236 NA DI was used to investigate the role of exhaust pipe deposits on PAH emissions. It was shown that PAH compounds could be volatilised from the exhaust pipe. The difference in the exhaust inlet and outlet particulate composition for diesel and kerosene fuels was used to quantify the n-alkane and PAH emissions originating from the exhaust pipe deposits. Comparison with pure PAH free fuels showed that the exhaust outlet PAH composition was similar to that expected from the exhaust pipe deposits.
Technical Paper

The Influence of Nozzle Sac Volume on the Composition of Diesel Particulate Fuel Derived SOF

1992-09-01
921649
The influence of nozzle sac volume on the composition of the fuel derived solvent organic fraction of diesel particulate from a naturally aspirated 1 litre per cylinder diesel engine was studied. Significant differences in the quantities of the polycyclic aromatic compounds for different sac volumes were found. The emission differences were due to the reduction of unburnt fuel contributions to particulate SOF as the sac volume was reduced.
Technical Paper

A Comparison of the Particulate Composition Between Turbocharged and Naturally Aspirated DI Diesel Engines

1991-02-01
910733
A naturally aspirated Perkins 4-236 engine was compared with a similar turbocharged Perkins engine. The higher pressures and temperature of a turbocharged engine should make the pyrosynthesis of PAH more likely than for a NA engine and this was investigated using the fuel n-alkanes as tracers for the unburnt fuel of the same fuel distillation fraction as the PAH. The results showed that the below C20 the NA and TC survivabilities of fuel n-alkanes onto the particulates were similar at below 0.02%. For higher n-alkanes the turbocharger was much more efficient at burning the fuel, with survivabilities of C24 a factor of 10 below the NA results. The higher operating temperatures of the TC engine reduced the UHC emissions and this reduced the higher boiling fraction unburned fuel. In contrast to these results the fuel PAH apparent survivability's were higher, by approximately a factor of 10, for the turbocharged engine for equivalent boiling point compounds in the range C18-C22.
Technical Paper

The Composition of the Organic Fraction of Particulate Emissions of a Diesel Operated on Vegetable Oil

1990-09-01
901563
Pure sunflower oil was used in a Perkins 4-236 DI diesel engine at 2200 rpm and maximum power, particulate samples at 50°C were obtained from the exhaust 7m from the exhaust port in an air cooled exhaust pipe. The engine lubricating oil was fresh and contained no fuel contamination. The sunflower oil had higher particulate, UHC, CO and NOx emissions than for diesel. This was attributed to the shorter ignition delay and higher diffusive burning. The higher UHC emissions also resulted in a higher particulate SOF. Sunflower oil contained no fuel PAH above 1 ppm and there was no source of PAH from the lubricating oil. However, significant PAH emissions were found in the particulate SOF, but at a level well below that for diesel. It was shown that the bulk of this PAH could be attributed to the thermal desorption of PAH from the exhaust pipe walls. Hence, there was little PAH generated by pyrosynthesis as part of the combustion process.
Technical Paper

Diesel Particulate Composition Changes Along an Air Cooled Exhaust Pipe and Dilution Tunnel

1989-02-01
890789
Exhaust particulate and gas composition samples were obtained at various distances along an externally air cooled exhaust from a Perkins 4-236 single cylinder engine. The change in the particulate composition was determined as a function of the exhaust distance and local temperature. Exhaust temperatures were in the range 200 - 260C at entry to the tunnel at all engine conditions. A constant filter paper and sample temperature of 50C was used for both exhaust and dilution tunnel samples and the filter paper was mounted in an oven for this purpose and the particulate sample was tranported through heated lines to this oven. Associated with these particulate measurements were gas analysis measurements. UHC were measured at 180, 50 and 2C in the exhaust and the differences were taken as an indication of the condensable hydrocarbons over that temperature difference.
Technical Paper

Pyrosynthesis of PAH in a Diesel Engine Operated on Kerosene

1989-02-01
890827
The objective was to investigate PAH emissions in diesel particulates using a kerosene fuel that had a PAH content that was predominantly two ring. Higher PAH were two orders of magnitude lower in concentration in the fuel than for diesel, but the two ring PAH were a higher proportion of the fuel than for diesel. Pyrosynthesis of higher PAH in the particulate from the two ring PAH would thus be easier to detect for kerosene. Fresh PAH free lubricating oil was used throughout in an attempt to eliminate additional sources of PAH. The kerosene results showed that emissions of higher PAH were an order of magnitude lower than with diesel. However, these PAH emissions were compatible with an unburnt fuel source, as the n-alkane results showed that the higher MW fuel components had a much greater survivablity than for diesel. A contribution to PAH and n-alkane emissions from the exhaust pipe deposits was also identified.
X