Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Experimental Analysis of Aspirating Airbag Units

1999-03-01
1999-01-0436
Aspirating airbag modules are unique from other designs in that the gas entering the airbag is a mixture of inflator-delivered gas and ambient-temperature air entrained from the atmosphere surrounding the module. Today's sophisticated computer simulations of an airbag deployment typically require as input the mass-flow rate, chemical composition and thermal history of the gas exiting the canister and entering the airbag. While the mass-flow rate and temperature of the inflator-delivered gas can be obtained from a standard tank test, information on air entrainment into an aspirated canister is limited. The purpose of this study is to provide quantitative information about the aspirated mass-flow rate during airbag deployment. Pressure and velocity measurements are combined with high-speed photography in order to gain further insight into the relationship between the canister pressure, the rate of cabin-air entrainment and the airbag deployment.
Technical Paper

A Study of Aspiration Effects in Reduced-Scale Model Airbag Modules

1998-09-29
982324
One-sixth scale model airbag modules have been used to investigate flow aspiration effects in passenger-side airbag modules. A similarity analysis between flows in the model and the prototype unit assures reasonable approximation of the actual flows. In the controlled flow environment of the model, flow visualization suggests that the underexpanded jet structure follows the universal relationship based on experimental data and shows that aspiration occurs through the aspiration holes. Detailed velocity measurements provide the ratio of the mass added to the discharged gas for a single firing. The same approaches can be applied in the design of full-scale airbag systems.
X