Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Technical Paper

Gearset Synchronization Modeling of a Heavy Commercial Vehicle Transmission and Correlation with Objective Measurements of Gear Shift Quality

2019-01-15
2019-01-0031
For manual transmissions, including the automated types, reduced shifting effort and easy of gear set engagements in a short period of time without rattles and shakes are major requirements for the shift quality evaluations. Performance of the synchronizer mechanisms depends highly on the design, material and arrangement of the transmission synchronization components; thus, the synchronization process is a mechanical and tribological process which is influenced by numerous design parameters of the synchronizers, constraints and properties of the lubricated contacts. In this study, a detailed multi-body-dynamics model for a HCV (Heavy Commercial Vehicle) transmission gearset is presented; various synchronization simulations are performed and the results are compared with the objective shift quality measurements. The developed model yields total synchronization and engagement time based on the applied gear shifting effort.
Technical Paper

Optimization of Timing Drive System Design Parameters for Reduced Engine Friction

2010-10-25
2010-01-2202
A timing drive model was developed based on computer-aided simulation methods and used to calculate the contribution of each system component to the overall timing drive friction loss at various engine operating conditions. Combining the analytical results and statistical methods, an optimization study was performed to calculate the ideal system design parameters such as hydraulic tensioner spring force and flow rate, sprocket tooth profiles and circularity, and oil supply pressure. The simulation results revealed that while the plastic guide - timing chain friction is responsible for the most part of the frictional losses, the contribution of timing chain friction increases with increasing speed. It was found that the tensioner guide is the key element in the guiding system that causes friction losses. Furthermore, tensioner spring force and engine oil pressure were identified as major design parameters that influence the efficiency of the timing drive.
Journal Article

Reduced Oil Consumption by Laser Surface Texturing on Cylinders

2008-10-07
2008-01-2688
This study mainly focuses on oil consumption behavior of laser textured cylinder bores. The results of an experimental study performed on a six cylinder, 9.0 L capacity diesel engine is presented. The engine has Compacted Graphite Iron (CGI) cylinder block, and parent bore power cylinder design. Both an instantaneous oil consumption measurement method, sulfur-tracing, and a conventional oil consumption measurement method, “drain and weigh”, are used in determining the effects of different laser texture parameters at different running conditions. Oil consumption measurement results with the conventional plateau honed surface in comparison with the laser honed surface are also discussed.
Technical Paper

Frictional Characteristics of Plasma Spray Coated Cylinder Bores

1999-03-01
1999-01-1220
Low cost and solid lubricant containing plasma spray coated cylinder liners have been investigated for their frictional performance under simulated engine conditions. A bench testing system which has high stroke and large contact width has been used to obtain friction data for plasma spray coated cylinder liners. Results are compared with conventional cast-iron samples. Experimental data has been developed as friction coefficient / crank angle degree diagrams. The effects of speed and temperature have been investigated. Plasma spray coated cylinder liners showed lower friction and higher tendency to develop hydrodynamic lubrication compared to conventional cast-iron bores.
Technical Paper

A New Experimental Technique for Friction Simulation in Automotive Piston Ring and Cylinder Liners

1998-05-04
981407
A new friction testing system has been designed and built to simulate the actual engine conditions in friction and wear test of piston-ring and cylinder liner assembly. Experimental data has been developed as Friction Coefficient / Crank Angle Degree diagrams including the effects of running speed (500 and 700 rpm) and ring normal load. Surface roughness profilocorder traces were obtained for tested samples. Mixed lubrication regime observed in the most part of the test range. New cylinder bore materials and lubricants can be screened easily and more reliable simulated engine friction data can be collected using this technique.
X