Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

PEM Energy Storage for Solar Aircraft

1999-08-02
1999-01-2613
Practical solar powered aircraft require an efficient energy storage system to store energy during the day for use at night. Hydrogen and oxygen, generated by electrolyzing water during the day and recombined at night to generate electricity, has a theoretical energy density of 3.73 kWh/kg. Harnessing this potential has been approached with a combination of a lightweight PEM electrolyzer and a lightweight PEM fuel cell with a new stack structure utilizing metallurgical bonding to assemble thin metal gas barriers with lightweight metal flow fields. This design minimizes size, weight, electrical resistance, and part count. This technology has been demonstrated to produce efficient and effective stacks.
Technical Paper

Electrically Initiated Chemically Heated Catalytic Converter to Reduce Cold-Start Emissions from Automobiles

1999-03-01
1999-01-1233
Automobiles having conventional three-way catalytic converters emit a majority of their exhaust emissions within the first 2-3 minutes after engine cranking following a “cold-start”. Rapidly increasing the catalyst temperature of a catalytic converter to the light-off temperature of the catalyst is of paramount importance in curtailing tailpipe emissions. The technical feasibility of a new heating strategy based on an Electrically Initiated Chemically Heated Catalyst (EICHC™) approach has been demonstrated. A test apparatus incorporating an EHC and a spray-generating nozzle was constructed to conduct an extensive parametric study. A spray of methanol along with air was passed through the EHC preheated at different temperatures. With the EICHC™ approach, the time required to achieve catalyst light-off temperature within the EHC was reduced drastically. Supplying methanol to chemically heat the catalytic converter lowered considerably the electrical energy requirements.
Technical Paper

Post-Treatment of Reclaimed Waste Water Based on an Electrochemical Advanced Oxidation Process

1992-07-01
921275
The purification of reclaimed water is essential to water reclamation technology life-support systems in lunar/Mars habitats. Lynntech, Inc., working with NASA-JSC, is developing an electrochemical UV reactor which generates oxidants, operates at low temperatures and requires no chemical expendables. The reactor is the basis for an advanced oxidation process, in which electrochemically generated ozone and hydrogen peroxide are used, in combination with ultraviolet light irradiation, to produce hydroxyl radicals. Results from this process are presented which demonstrate concept feasibility for removal of organic impurities and disinfection of water for potable and hygiene reuse. Power, size requirements, Faradaic efficiency and process reaction kinetics are discussed. At the completion of this development effort, the reactor system will be installed in JSC's regenerative water recovery test facility for evaluation to compare this technique with other candidate processes.
Technical Paper

Development of a Proton-Exchange Membrane Electrochemical Reclaimed Water Post-Treatment System

1991-07-01
911538
A single cell electrochemical reactor that utilizes a proton exchange membrane (PEM) as a solid electrolyte is being investigated and developed at Texas A&M University for post-treatment of reclaimed waters with low or negligible electrolyte content. Post-treatment is a final polishing of reclaimed waste waters prior to reuse and constitutes removing organic impurities at levels as high as 100 ppm to <500 ppb total organic carbon (TOC) content and provides disinfection. The system does not utilize or produce either expendable hardware components or chemicals and has no moving parts. This paper discusses a single cell reactor concept; test system design; the role of the proton exchange membrane; and the principle of organic impurity oxidation at PEM interfacial reaction zones. The fabrication performance evaluation; design and sizing of a prototype system are discussed. Test data and kinetic analysis are presented.
Technical Paper

Electrooxidation of Organics in Waste Water

1990-07-01
901312
Electrooxidation is a means of removing organic solutes directly from waste waters without the use of chemical expendables. Research sponsored by NASA Johnson Space Center is currently being pursued at Texas A&M University to demonstrate the feasibility of the concept for oxidation of organic impurities common to urine, shower waters and space habitat humidity condensates. Electrooxidation of urine and waste water ersatz was experimentally demonstrated. This paper discusses the electrooxidation principle, reaction kinetics, efficiency, power, size, experimental test results and water reclamation applications. Process operating potentials and the use of anodic oxidation potentials that are sufficiently low to avoid oxygen formation and chloride oxidation are described. The design of a novel electrochemical system that incorporates a membrane-based electrolyte based on parametric test data and current fuel cell technology is presented.
X