Refine Your Search

Search Results

Author:
Viewing 1 to 6 of 6
Technical Paper

Modelling of Engine Cooling System with a New Modelling Approach Based on Dynamic Neural Network

2021-04-06
2021-01-0203
Thermal management has always played a significant role in reducing emissions and improving the fuel efficiency of the internal combustion engines (ICEs). With a momentous influence on the thermal behavior of the engines, the cooling system has a considerable impact on ICE performance. In this scenario, a method based on artificial neural network (ANN) of the cooling system was proposed in this work. Specific modeling methods were adopted for the various operating conditions and flow circuits of the cooling system. To describe these varied dynamic characteristics, four ANN sub-models were established to simulate the system at different temperature stages. As a closed-loop system, the temperature of the cooling system can be regarded as a result of all the experienced operating points. Therefore, integral parameters describing the trajectory of the system were selected as the input of the ANNs.
Technical Paper

Fuel Consumption Modelling of a TFSI Gasoline Engine with Embedded Prior Knowledge

2021-04-06
2021-01-0633
As an important means of engine development and optimization, modelbuilding plays an increasingly important role in reducing carbon dioxide emissions of the internal combustion engines (ICEs). However, due to the non-linearity and high dimension of the engine system, a large amount of data is required to obtain high model accuracy. Therefore, a modelling approach combining the experimental data and prior knowledge was proposed in this study. With this method, an artificial neural network (ANN) model simulating the engine brake specific fuel consumption (BSFC) was established. With mean square error (MSE) and Kullback-Leibler divergence (KLD) serving as the fitness functions, the 86 experimental samples and constructed physical models were used to optimize the ANN weights through genetic algorithms.
Technical Paper

Dualhybrid-Cold Start Performance Study for a HEV with Two Combustion Engines

2021-04-06
2021-01-0396
The fuel economic and emission performance of an innovative electric hybrid vehicle (HEV), Dualhybrid, with two internal combustion engines (ICEs) under cold start conditions was studied. Sub-models including powertrain, lubrication and cooling system as well as exhaust system were built and integrated into the models of Dualhybrid and two other reference models: Base model and Fullhybrid model. Coupled lubrication and the exhaust systems of the two ICEs are proposed. The effect of the combination of oil heating and electric heating on the fuel consumption of Dualhybrid was investigated. The results show that the coupled lubricating system of Dualhybrid is beneficial to improve the fuel economy in cold start. The method of hybrid heating can provide a sufficient heating power of the cabin in the initial stage of cold start without declining the fuel economic performance significantly.
Technical Paper

Optical Measurement of Spark Deflection Inside a Pre-chamber for Spark-Ignition Engines

2020-10-14
2020-01-5096
The start of combustion in a spark-ignited engine is highly dependent upon the conditions between the two spark plug electrodes at ignition. In addition to the air-to-fuel ratio in this gap, the gas flow is seen as most critical. In a combustion engine with a standard spark plug that protrudes into the combustion chamber, this gas flow is mainly dependent upon the tumble, swirl, or squish that is developed by the cylinder head and the piston movement. However, the air movement in the pre-chamber depends on the orientation of the orifices towards the main combustion chamber (MCC). This implies a less complex manipulation of local velocity in the electrode gap. This paper focuses on the effect of different pre-chamber designs on spark deflection by the inflowing gas. Therefore, a test rig was developed using the spark plug thread in the cylinder head of a motored engine.
Technical Paper

Dualhybrid - Proof of a Concept for an HEV with Two Combustion Engines

2020-04-14
2020-01-1019
Due to the prevalent fuel economy, research on electric hybrid vehicles (HEVs) has attracted recently widespread attention. However, most researches were focused on electrification, neglecting the crucial role of internal combustion engines (ICEs) in reducing fuel consumption. Holding the opinion that ICEs can contribute more in developing fuel economic vehicles, we present in this paper a new HEV topology with two ICEs - Dualhybrid. Two separate traction units, conventional drivetrain with ICE1at front axle and electric hybrid drivetrain with ICE2+battery at rear axle constitute the powertrain of this new HEV concept. One dimensional simulation with sub-models built upon different modelling methods is implemented. Energy management of Dualhybrid is identified with a rule-based control strategy. Base and Fullhybrid model were built as references and a comparative simulation among the three models was conducted.
Technical Paper

Impact of Non-Thermal Plasma on Particulate Emissions in Application in a Diesel Engine Exhaust Duct

2017-12-06
2017-01-5100
Particulates and nitrogen oxides comprise the main emission components of the Diesel combustion and therefore are subject to exhaust emission legislation in respective applications. Yet, with ever more stringent emission standards and test-procedures, such as in passenger vehicle applications, resulting exhaust gas after-treatment systems are quite complex and costly. Hence, new technologies for emission control have to be explored. The application of non-thermal plasma (NTP) as a means to perform exhaust gas after-treatment is one such promising technology. In several publications dealing with NTP exhaust gas after-treatment the plasma state was generated via dielectric barrier discharges. Another way to generate a NTP is by a corona high-frequency discharge. Hence, in contrast to earlier publications, the experiments in this publication were conducted on an operated series-production Diesel engine with an industrial pilottype corona ignition system.
X