Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Measurement of Laminar Burning Velocity of Multi-Component Fuel Blends for Use in High-Performance SI Engines

2003-10-27
2003-01-3185
A technique was developed for measuring the Laminar Burning Velocity (LBV) of multi-component fuel blends for use in high-performance spark-ignition engines. This technique involves the use of a centrally-ignited spherical combustion chamber, and a complementary analysis code. The technique was validated by examining several single-component fuels, and the computational procedure was extended to handle multi-component fuels without requiring detailed knowledge of their chemical composition. Experiments performed on an instrumented high-speed engine showed good agreement between the observed heat-release rates of the fuels and their predicted ranking based on the measured LBV parameters.
Technical Paper

The Effect of Fuel Composition and Additive Content on Injector Deposits and Performance of an Air-Assisted Direct Injection Spark Ignition (DISI) Research Engine

2001-05-07
2001-01-2030
This paper presents the findings of some fundamental characterisation of the deposits that form on the injectors of an air-assisted DISI automotive engine, including the effect of these deposits on engine performance when operated in different combustion modes, with varying fuel composition and additive content. A root cause analysis was undertaken, including an assessment of injector temperature and deposit chemistry. Fuels from a matrix designed around the European year 2000 gasoline specifications for T90, olefin and aromatic levels were used to study the effect of fuel composition on deposit formation. Two commercial gasoline detergent additives, of different chemistries, were used to investigate the impact on deposit formation. The results of the fuels study and deposit analysis are consistent with published theories concerning fuel composition impact on combustion chamber deposit (CCD).
Technical Paper

The Effect of Fuel Composition and Engine Operating Parameters on Injector Deposits in a High-Pressure Direct Injection Gasoline (DIG) Research Engine

1999-10-25
1999-01-3690
The effects of fuel composition and engine operating parameters on high-pressure, direct injection gasoline (DIG) injector plugging and deposit formation have been studied. The engine used was a conventional dual-sparkplug, 2.2-liter Nissan engine modified for direct injection using one of the spark plug holes. The engine was run under 20% rich conditions to accelerate deposit formation. A ten-fuel test matrix was designed around T90, sulfur level, and olefin levels indicated in the European gasoline specifications for year 2000. The gasolines, containing no detergents, were formulated using refinery stream blends to match the specified targets. Injector flow loss was monitored by fuel flow to the engine and monitoring oxygen sensors on each of the four cylinders. The impact of fuel composition on deposit formation and injector plugging is discussed. Injector flow loss was strongly influenced by injector tip temperature.
Technical Paper

Coordinating Research Council Development of a CRC Intake Valve Deposit Test

1994-03-01
940348
The Coordinating Research Council (CRC) Intake Valve Deposit Group is evaluating a dynamometer based test to rank fuels for their relative tendency to form intake valve deposits. The Ford 2.3L OHC, dual spark plug equipped engine was previously selected (1*) for use in the current test program to determine optimum test conditions. A fifteen test design of experiments was constructed to reproduce intake valve deposit weight and morphology, representative of that causing field driveability problems. Test results were analyzed and a two-mode composite test was deduced from deposit weights, visual ratings, observations on the test valves and thermogravimetric analysis (TGA) results. Once the test was optimized, an additional ten test matrix was conducted to assess both repeatability and the performance of the test over a range of deposit levels. Base fuel and base fuel + two additive combinations were tested to provide a range of deposit tendencies.
X