Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Thermal Management System Concept with an Autonomous Air-Cooled System

2014-09-16
2014-01-2213
Electrical power management is a key technology in the AEA (All-Electric Aircraft) system, which manages the supply and demand of the electrical power in the entire aircraft system. However, the AEA system requires more than electrical power management alone. Adequate thermal management is also required, because the heat generated by aircraft systems and components increases with progressive system electrification, despite limited heat-sink capability in the aircraft. Since heat dissipation from power electronics such as electric motors, motor controllers and rectifiers, which are widely introduced into the AEA, becomes a key issue, an efficient cooling system architecture should be considered along with the AEA system concept. The more-electric architecture for the aircraft has been developed; mainly targeting reduced fuel burn and CO2 emissions from the aircraft, as well as leveraging ease of maintenance with electric/electronic components.
Technical Paper

System Concept Study of Electrical Management for Onboard Systems

2014-09-16
2014-01-2200
With the growth in onboard electrification referred to the movement of the More Electric Aircraft, or MEA, and constant improvement in ECO standards, aircraft electricity load has continued to soar. The airline and authors have discussed the nature of future aircraft systems in the next two decades, which envisages the further More Electric Aircraft or the All-Electric Aircraft, or AEA, concept helping provide some effective aviation improvements. The operators, pilots and maintenance crews anticipate improved operability, ease of maintenance and fuel saving, while meetings depends for high reliability and safety by electrification. As part of initial progress, the authors approach the methodology of energy management for aircraft systems.
Technical Paper

Study of VCS Design for Energy Optimization of Non-Bleed Electric Aircraft

2014-09-16
2014-01-2225
To improve an energy optimization issue of ECS for MEA, we propose our concept in which ACS is replaced with VCS. A VCS is generally evaluated as auxiliary or limited cooling system of an aircraft. Cooling demand of commercial aircraft usually becomes large due to ventilation air at hot day conditions. In case of using conventional VCS for whole cooling demand, the ECS becomes too heavy as aircraft equipment. Though ACS's light weight is advantageous, the issue that VCS will be available for aircraft ECS is important for saving energy. ECS of commercial aircraft should work for three basic functions, i.e. pressurization, ventilation, and temperature control. The three functions of the ECS for bleed-less type of MEA can be distributed among equipment of the ECS. MDFAC works for pressurization and ventilation. Therefore, we should select appropriate system for only temperature control.
Technical Paper

Variable Magnetomotive Force Memory Motor for Electric Vehicles

2011-05-17
2011-39-7257
Reduction of the energy consumption of electric vehicles (EV) and electrical appliances is one of the solutions for reduction of CO₂ emission. Then, we have developed a novel permanent magnet motor for energy saving. In this paper, we propose a novel motor that can change the magnetic flux by a new method to magnetize permanent magnets and we clarify the principle and unique characteristics. Furthermore, the results of analysis and experiments prove that the novel motor can change the flux of permanent magnets on-load and supports the realization of a variable speed drive with high performance and high efficiency.
X