Refine Your Search

Search Results

Viewing 1 to 6 of 6
Journal Article

Development of Integrated Modular Motor Drive for Traction Applications

2011-04-12
2011-01-0344
This paper introduces a promising approach for developing an integrated traction motor drive based on the Integrated Modular Motor Drive (IMMD) concept. The IMMD concept strives to meet aggressive power density and performance targets by modularizing both the machine and power electronics and then integrating them into a single combined machine-plus-drive structure. Physical integration of the power electronics inside the machine makes it highly desirable to increase the power electronics operating temperature including higher power semiconductor junction temperatures and improved device packaging. Recent progress towards implementing the IMMD concept in an integrated traction motor drive is summarized in this paper. Several candidate permanent magnet (PM) machine configurations with different numbers of phases between 3 and 6 are analyzed to compare their performance characteristics and key application features.
Technical Paper

Performance of the ASTROCULTURE™ Plant Growth Unit (ASC-8) During the STS-95 Mission

2000-07-10
2000-01-2474
Conducting research to assess the impact of microgravity on plant growth and development requires a plant growth unit that has the capability to provide an enclosed, controlled environment chamber. Since plants are sensitive to a number of atmospheric gaseous materials, the chamber's atmosphere must be isolated from the space vehicle atmosphere. The plant growth unit must also be capable of removing any deleterious materials that may affect plant growth and development. The ASTROCULTURE™ plant growth unit (ASC-8), developed by Wisconsin Center for Space Automation and Robotics (WCSAR) at the University of Wisconson, was used to provide the desired environmental conditions required to support plant growth experiment during 9-day STS-95 mission. Effective control of chamber temperature, chamber humidity, plant water and nutrients delivery, and chamber carbon dioxide was maintained during the entire mission.
Technical Paper

SMURRF - A Robotic Facility for Space Based Science Operations

1998-07-13
981698
Automation of space-based scientific operations minimizes the crew time needs for experiments while increasing the efficiency and quality of science operations. ORBITEC has completed the development of a space qualifiable prototype of a Shared Multi-Use Remote Robotics Facility (SMURRF). SMURRF, sized for a Middeck Locker (MDL) application, provides a simple, flexible, and functional manipulator to assist space operations, in manned or unmanned modes, carried out in lockers or racks onboard the Space Shuttle and the International Space Station (ISS). It will be primarily operated in an automated mode with additional remote command/control capability from the ground or from space. Ground trials have demonstrated that many operations can be autonomously performed without the presence of a human operator.
Technical Paper

Control and Monitoring of Environmental Parameters in the ASTROCULTURE™ Flight Experiment

1995-07-01
951627
The ASTROCULTURE™ (ASC) middeck flight experiment series was developed to test and integrate subsystems required to grow plants in reduced gravity, with the goal of developing a plant growth unit suitable for conducting quality biological research in microgravity. Flights on the Space Shuttle have demonstrated control of water movement through a particulate rooting material, growth chamber temperature and humidity control, LED lighting systems and control, recycling of recovered condensate, ethylene scrubbing, and carbon dioxide control. A complete plant growth unit was tested on STS-63 in February 1995, the first ASC flight in which plant biology experiments were conducted in microgravity. The methods and objectives used for control of environmental conditions in the ASC unit are described in this paper.
Technical Paper

Plant Response in the ASTROCULTURE™ Flight Experiment Unit

1995-07-01
951624
The ASTROCULTURE™ flight unit flown as part of the SPACEHAB-03 mission on STS-63 was a complete plant growth system providing plant lighting, temperature control, humidity control, water and nutrient delivery, a CO2 control system, nutrient control using the NASA Zeoponics system, an ethylene photocatalysis unit, a control and data acquisition system, and plant video. The objective of the ASTROCULTURE™-4 experiment was to continue technological assessment of these environmental control subsystems. Plants were included in this package for the first time. Two plant species were flown, rapid cycling ‘Wisconsin Fast Plants’ (Brassica rapa), and dwarf wheat (Triticum aestivum cv. ‘Super Dwarf’). Growth and development of both plant species on orbit appeared normal and similar to that of plants grown under terrestrial conditions.
Technical Paper

Humidity and Temperature Control in the ASTROCULTURE™ Flight Experiment

1994-06-01
941282
The ASTROCULTURE™ (ASC) middeck flight experiment series was developed to test subsystems required to grow plants in reduced gravity, with the goal of developing a plant growth unit suitable for conducting quality biological research in microgravity. Previous Space Shuttle flights (STS-50 and STS-57) have successfully demonstrated the ability to control water movement through a particulate rooting matrix in microgravity and the ability of LED lighting systems to provide high levels of irradiance without excessive heat build-up in microgravity. The humidity and temperature control system used in the middeck flight unit is described in this paper. The system controls air flow and provides dehumidification, humidification, and condensate recovery for a plant growth chamber volume of 1450 cm3.
X