Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Model-Based Control of the VGT and EGR in a Turbocharged Common-Rail Diesel Engine: Theory and Passenger Car Implementation

2003-03-03
2003-01-0357
In this article model-based controller design techniques are investigated for the transient operation of a common-rail diesel engine in order to optimize driveability and to reduce soot emissions. The computer-aided design has benefits in reducing controller calibration time. This paper presents a nonlinear control concept for the coordinated control of the exhaust gas recirculation (EGR) valve and the variable geometry turbocharger (VGT) in a common-rail diesel engine. The overall controller structure is set up to regulate the total cylinder air-charge with a desired fresh air-charge amount by means of controlling the intake manifold pressure and estimating the fresh air-charge inducted into the cylinders. During varying engine operating conditions the two control loops are coordinated by a compensation of the EGR valve action through the VGT controller.
Technical Paper

Evaluation of NOx Storage Catalysts as an Effective System for NOx Removal from the Exhaust Gas of Leanburn Gasoline Engines

1995-10-01
952490
One possibility to improve the fuel economy of SI-engines is to run the engine with a lean air-fuel-ratio (AFR). Hydrocarbon and carbon monoxide after-treatment has been proven under lean operation, but NOx-control remains a challenge to catalyst and car manufacturers. One strategy that is being considered is to run the engine lean with occasional operation at stoichiometry. This would be in conjunction with a three-way-catalyst (TWC) to achieve stoichiometric conversion of the three main pollutants in the normal way and a NOx trap. The NOx trap stores NOx under lean operation to be released and reduced under rich conditions. The trap also functions as a TWC and has good HC and CO conversion at both lean and stoichiometric AFR's. Under lean conditions NO is oxidised to NO2 on Pt which is then adsorbed on an oxide surface. Typical adsorbent materials include oxides of potassium, calcium, zirconium, strontium, lanthanum, cerium and barium.
Technical Paper

Model-Based Air-Fuel Ratio Control of a Lean Multi-Cylinder Engine

1995-02-01
950846
Realization of the leanburn SI engine's potential for improved fuel economy strongly depends on precise control of the air-fuel ratio (AFR), especially during transients, for acceptable driveability and low exhaust emissions. The development of an adaptive-feedforward model-based AFR controller is described. A discrete, nonlinear, control-oriented engine model was developed and used in the AFR control algorithm. The engine model includes intake-manifold airflow dynamics, fuel wall-wetting dynamics, process delays inherent in the four-stroke engine cycle, and exhaust-gas oxygen (UEGO) sensor dynamics. The sampling period is synchronous with crank-angle (“event-based”) for more precise control. The controller relies on the engine speed and throttle position for load information. An intake-manifold pressure (MAP) sensor is used for identification of the airflow dynamics, but not for control. The MAP sensor would also be useful for the cold start and for engine diagnostics.
X