Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Object Oriented Plant Models for HEV Controller Development

2009-04-20
2009-01-0148
With the increased interest in hybrid vehicle technology there is a need to investigate vast amounts of different hybrid vehicle topologies. Modelling and simulation plays an important role in this investigation process. In particular, modelling for controller development can quickly lead to model management and maintenance issues due to the variety of models required. The use of object oriented modelling languages can aid in plant model management by providing flexibility to different levels of users as well as reducing the number of separate plant models required for controller development. Two case studies are presented that illustrate some of the benefits gained from the object oriented modelling approach.
Technical Paper

Potential for Fuel Economy Improvements by Reducing Frictional Losses in a Pushing Metal V-Belt CVT

2004-03-08
2004-01-0481
This paper gives an overview of the development of a number of loss models for the pushing metal V-belt CVT. These were validated using a range of experimental data collected from two test rigs. There are several contributions to the torque losses and new models have been developed that are based upon relative motion between belt components and pulley deflections. Belt slip models will be proposed based upon published theory, expanded to take account of new findings from this work. The paper introduces a number of proposals to improve the efficiency of the transmission based on redesign of the belt geometry and other techniques to reduce frictional losses between components. These proposed efficiency improvements have been modelled and substituted into a complete vehicle simulation to show improvements in vehicle fuel economy over a standard European drive cycle.
Technical Paper

Application of Alternative EGR and VGT Strategies to a Diesel Engine

2004-03-08
2004-01-0899
This paper describes the results of an investigation into alternative control strategies for diesel engines equipped with Exhaust Gas Recirculation (EGR) and Variable Geometry Turbocharging (VGT). The objectives of the research were to improve the engine aircharge performance during transient manoeuvres, thus bringing benefits for fuel economy, exhaust emissions and engine transient performance. Two of the investigated areas are detailed in this paper; The coordinated control of the EGR-VGT systems to improve transient airflow at low-speed, low-load operation Transient VGT control using exhaust pressure feedback A simple and effective method for coordinating the EGR-VGT system is demonstrated to improve airflow response to tip-ins and tip-outs. The exhaust pressure feedback method is shown to overcome difficulties in the transient control of VGT systems, offering improved engine torque response and reduced transient backpressure.
Technical Paper

Investigation of ‘Sweep’ Mapping Approach on Engine Testbed

2002-03-04
2002-01-0615
Steady state mapping is fundamental to optimizing IC engine operation. Engine variables are set, a predefined settling time elapses, and then engine data are logged. This is an accurate but time consuming approach to engine testing. In contrast the sweep method seeks to speed up data capture by continuously moving the engine through its operating envelope without dwelling. This is facilitated by the enhanced capability of modern test rig control systems. The purpose of this work is to compare the accuracy and repeatability of the sweep approach under experimental conditions, with that of steady state testing. Limiting factors for the accuracy of the sweep approach fall into two categories. Firstly on the instrumentation side - transducers have a characteristic settling time. Secondly on the engine side - thermal and mechanical inertias will mean that instantaneous measurements of engine parameters differ from the steady state values.
Technical Paper

Performance Investigations of a Novel Rolling Traction CVT

2001-03-05
2001-01-0874
The Milner CVT is a patented [1] rolling traction transmission offering advantages of high power density and simplicity of construction and operation. A 90 mm diameter prototype variator is described which was sized for a maximum rated input power of 12 kW. Experimental data are presented demonstrating high efficiency and low shift forces. Resistance to overload torque is shown to be exceptional and preliminary durability trials indicate a highly viable concept for series production. Based upon the measured data, characteristics of larger variators are predicted and prospects for automotive applications discussed.
Technical Paper

Integrated Cooling Systems for Passenger Vehicles

2001-03-05
2001-01-1248
Electric coolant pumps for IC engines are under development by a number of suppliers. They offer packaging and flexibility benefits to vehicle manufacturers. Their full potential will not be realised, however, unless an integrated approach is taken to the entire cooling system. The paper describes such a system comprising an advanced electric pump with the necessary flow controls and a supervisory strategy running on an automotive microprocessor. The hardware and control strategy are described together with the simulation developed to allow its calibration and validation before fitting in a B/C class European passenger car. Simulation results are presented which show the system to be controllable and responsive to deliver optimum fuel consumption, emissions and driver comfort.
Technical Paper

Dynamic Behaviour of a High Speed Direct Injection Diesel Engine

1999-03-01
1999-01-0829
Many Diesel engine development programs concentrate almost exclusively on steady state investigations to benchmark an engines performance. In reality, the inter-action of an engine's sub-systems under transient evaluation is very different from that evident during steady state evaluation. The transient operation of a complete engine system is complex, and collecting test data is very demanding, requiring sophisticated facilities for both control and measurement. This paper highlights the essential characteristics of a Diesel engine when undertaking testbed transient manouevres. Results from simple transient sequences typical of on-road operation are presented. The tests demonstrate how transient behaviour of the engine deviates greatly from the steady state optimum settings used to control the engine.
Technical Paper

Transient Investigation of Two Variable Geometry Turbochargers for Passenger Vehicle Diesel Engines

1999-03-01
1999-01-1241
The use of variable geometry turbocharging (VGT) as an aid to performance enhancement has been the subject of much interest for use in high-speed, light-duty automotive diesel applications in recent times (4). One of the key benefits anticipated is the improved transient response possible with such a device over the conventional fixed geometry turbine with wastegate. The transient responses of two different types of variable geometry turbocharger have been investigated on a dynamic engine test bed. To demonstrate the effect of the turbocharger on the entire system a series of step changes in engine load at constant engine speed were carried out with the turbocharger and exhaust gas recirculation (EGR) systems under the control of the engine management microprocessor. Results are presented which compare the different performance and emissions characteristics of the devices. Some control issues are discussed with a view to improving the transient response of both types.
Technical Paper

The Effect of Hydraulic Circuit Design and Control on the Efficiency of a Continuously Variable Transmission

1996-08-01
961797
As part of a larger programme of work on the integrated control of engine and transmissions a study has been made of the control aspects of the transmission with a detailed investigation of the hydraulic circuit. The requirements of the broader programme necessitated an electrical input for the transmission control and a test bed version was successfully modified with electro-hydraulic valves. Attention to detail in the design of the hydraulic circuit and the control of operating pressure can bring significant benefits to the transmission efficiency with consequent beneficial effects on fuel economy. This paper investigates several aspects of the components used and their effect on efficiency, in particular pump sizing. This investigation is illustrated with results from a computer simulation of the system. Possible improvements through a modified control strategy for the belt pressure are also proposed with steady state results obtained experimentally from the test bed transmission.
Technical Paper

Erosive Wear Measurement in Spool Valves

1993-04-01
931178
The authors describe the early stages of a programme to investigate the wear sensitivity of spool valves to abrasive contaminant in the fluid flow. Wear mechanisms in valves and aspects of test rig design are discussed. Methods of assessing wear are considered, both during and after completion of a test. Preliminary results are presented to highlight the difference between these methods and illustrate the changes in geometry that take place during the wear test.
X