Refine Your Search

Topic

Search Results

Technical Paper

Development of Active Rear Axles Steering Controller For 8X8 Combat Vehicle

2020-04-14
2020-01-0174
Lateral dynamic control considered to be crucial to enhance the handling characteristics and stabilization of a vehicle as a safety demand. In this paper, active rear axles steering control system will be developed using an optimal quadratic regulator (LQR) control methodology. The controller aims to minimize the vehicle side slip and consequently increase its handling stability and transient state performance. The controller design has been utilized the independent steering of the vehicle’s 3rd and 4th axles as control inputs. Furthermore, the developed controller will be combined with a feedforward zero side slip (ZSS) controller based on the steady-state model of the vehicle and satisfying the Ackermann steering condition. In addition, the steady-state handling performance will be evaluated using the Skid Pad test.
Technical Paper

An Overview of the Federal Transit Administration's Bus Testing Program

1998-11-16
982774
The Pennsylvania Transportation Institute (PTI) operates the Bus Testing and Research Center for the Federal Transit Administration (FTA). The objective of this paper is to present a summary of important findings during the first eight years of Center operation. This paper presents an overview of the test procedures and a descriptive matrix of vehicles submitted for testing. A summary of test results is provided, which includes a distribution of failures classified by severity and subsystem type. The paper briefly describes the developmental status of including brake performance and emissions testing as well as future plans for the implementation of electric and hybrid-electric bus testing.
Technical Paper

Determining the Vertical and Longitudinal First Mode of Vibration of a Wide Base FEA Truck Tire

2016-04-05
2016-01-1308
The purpose of this study is to determine the effect of tire operating conditions, such as the tire inflation pressure, speed, and load on the change of the first mode of vibration. A wide base FEA tire (445/50R22.5) is virtually tested on a 2.5m diameter circular drum with a 10mm cleat using PAM-Crash code. The varying parameters are altered separately and are as follows: inflation pressure, varying from 50 psi to 165 psi, rotational speed, changing from 20 km/h to 100 km/h, and the applied load will fluctuate from 1,500 lbs. to 9000 lbs. Through a comparison of previous literature, the PAM-Crash FFT algorithmic results have been validated.
Technical Paper

Development of Truck Tire-Soil Interaction Model using FEA and SPH

2013-04-08
2013-01-0625
Modern Finite Element Analysis (FEA) techniques allow for accurate simulation of various non-linear systems. However they are limited in their simulation of particulate matter. This research uses smooth particle hydrodynamics (SPH) in addition to FEA techniques to model the properties of soils, which allows for particle-level replication of soils. Selected soils are simulated in a virtual environment and validated using the pressure-sinkage and shear tests. A truck tire model is created based on standard heavy vehicle tires and validated using static deflection, contact footprint, and dynamic first mode of vibration tests. The validated tires and soils are used to create a virtual terrain and the tire is placed on the soil, loaded, and run over the soil at various speeds. The results of these simulations show that the SPH modeling technique offers higher accuracy than comparable FEA models for soft soils at a higher computational cost.
Technical Paper

Development of a Combat Vehicle FEA Tire Model for Off-Road Applications

2013-04-08
2013-01-0632
Off-road vehicle performance of a multi-wheeled 8×8 combat vehicle is strongly affected by the tire-terrain interaction characteristics. Soft soil reduces traction and modifies vehicle handling; therefore tire dynamics play a strong role in off-road mobility evaluation. In this paper three-dimensional, non-linear Finite Element Analysis (FEA) off-road tire models are developed using PAM-CRASH and the general trends of vertical load-deflection, cornering characteristics and aligning moment on rigid terrains are predicted and compared with published, measured data of a similar tire for validation purposes. The FEA off-road tire models are used to investigate the multi-pass behavior of the wheels running and steering on soft terrain. The steering characteristics of the multi-wheels are also predicted for the purpose of the development of tire-soft soil empirical equations for future research work.
Journal Article

A Novel Coordination Method for an Integrated Chassis Controller of an 8x8 Combat Vehicle

2022-03-29
2022-01-0353
The objective of the Integrated Chassis Controllers (ICC) is to combine multiple actuators and dynamics controllers to maximize the overall vehicle performance at all driving conditions. It is well known that there are two methods that can be used to develop an ICC. The first is a centralized method, where all the actuators are considered in one controller to ensure a harmonic integration between different actuators. The second method is called decentralized integration, where each actuator is considered in a separate controller and a low-level controller is used to coordinate the operation of the controllers. In this paper, the second method is used to develop a decentralized ICC using a novel controller coordinator based on Genetic Programming (GP). The GP is used to integrate torque vectoring and active rear steering controllers of an 8x8 combat vehicle. The controller is utilized to enhance the lateral stability of the vehicle in various driving conditions.
Technical Paper

Development of Novel Steering Scenarios for an 8X8 Scaled Electric Combat Vehicle

2023-04-11
2023-01-0106
This work investigates the steering and wheel speed control of a completely custom built 8x8 scaled electric combat vehicle (SECV) which has been constructed to meet the Ackermann condition at low speeds. During remote control operation the scaled vehicle is capable of continuously maintaining and varying the individual wheel speed and individual wheel steering angles of all eight wheels in real time. Several steering scenarios have been developed including traditional (front 2-axle steering), fixed third axle (first, second and fourth axle steering), all wheel steering and crab steering (all wheels are parallel with same steering angle). The traditional, two axle steering scenario is experimentally tested for accuracy in this work with planned future research for experimental analysis of the other steering configurations. This work is conducted using Arduino software to control the physical SECV and TruckSim software to simulate the dynamics of the vehicle.
Technical Paper

A Comprehensive Study of the Impact of Tread Design on the Tire-Terrain Interaction using Advanced Computational Techniques

2023-04-11
2023-01-0018
This paper investigates the impact of tread design on the tire-terrain interaction of two similar-sized truck tires with distinctly different tread designs running over various terrains and operating conditions using advanced computation techniques. The two truck tires used in the research are off-road tires sized 315/80R22.5 wide which were designed through Finite Element Analysis (FEA). The truck tire models were validated in static and dynamic domains using several simulation tests and measured data. The terrain includes a flooded surface and a snowed surface which were modelled using Smoothed-Particle Hydrodynamics (SPH) technique and calibrated using pressure-sinkage and direct shear tests. Both truck tire models were subjected to rolling resistance and cornering tests over the various flooded surface and snowed surface terrain conditions on the PAM-CRASH software.
Technical Paper

Sensitivity Analysis of Tire-Soil Interaction Using Finite Element Analysis and Smoothed Particle Hydrodynamics Techniques

2019-04-02
2019-01-0174
This paper presents the modelling, calibration and sensitivity analysis of LETE sand soil using Visual Environment’s Pam Crash. LETE sand is modelled and converted from Finite Element Analysis mesh (FEA) to Smooth-particle hydrodynamics (SPH). The sand is then calibrated using terramechanics published data by simulating a pressure sinkage test and shear box test using the SPH LETE sand particles. The material properties such as tangent modulus, yield strength and bulk modulus are configured so the simulation’s results match those of theoretical values. Sensitivity analysis of the calibrated LETE sand material is then investigated. The sensitivity analysis includes mesh size, plate geometry, smoothing length, max smoothing length, artificial viscosity and contact thickness. The effect of these parameters on the sand behavior is analyzed.
Technical Paper

Pickup Truck and Trailer Gross Vehicle Weight Study

2019-04-02
2019-01-1109
The objective of this paper is to evaluate the dynamic performance of pickup truck - trailer configurations, using performance measures adopted by Commercial Vehicle Safety and Enforcement (CVSE). The pickup truck models are selected based on the US truck classification that segregates trucks on the basis of the vehicle’s gross vehicle weight ratings (GVWR). Three different types of trailers - gooseneck trailer, pintle hook trailer and three-axle trailer with parametric hitch - are utilized in this study. The truck-trailer configurations will be evaluated for static rollover threshold, load transfer ratio, rearward amplification, friction demand, lateral friction utilization, high speed, low speed and transient off tracking and three-point handling performance. These measures are based on definitions from Canada’s heavy vehicle weights and dimensions study.
Technical Paper

Development of a Wide Base Rigid Ring Tire Model for Rigid Surfaces

2015-04-14
2015-01-0626
The purpose of this research paper is to outline the procedure behind the parameter population of a wide-base rigid ring model. A rigid ring model is a mathematical representation of a highly non-linear FEA tire model that incorporates the characteristics and behaviour of a known physical tire. The rigid ring model parameters are determined using carefully designed virtual scenarios which will isolate for the parameter in question. Once all of the parameters have been calculated, for in-plane as well as out-of-plane parameters, a full rigid ring model can be populated. This model can also be modified to accommodate for a tire model simulated running over soft soils if necessary. For the purpose of this research however, the soft soil parameters were not determined. Once the rigid ring model is complete, the parameters can be used in a highly simplified virtual model to replicate the known behaviour of the tire but reduce the overall complexity of the full vehicle model.
Technical Paper

Dual Stage Front Underride Protection Devices (dsFUPDs): Collision Interface and Passenger Compartment Intrusion

2014-04-01
2014-01-0567
A performance investigation of Front Underride Protection Devices (FUPDs) with varying collision interface is presented by monitoring occupant compartment intrusion of Toyota Yaris and Ford Taurus FEA models in LS-DYNA. A newly proposed simplified dual-spring system is developed and validated for this investigation, offering improvements over previously employed fixed-rigid simplified test rigs. The results of three tested collision interface profiles were used to guide the development of two new underride protection devices. In addition, these devices were set to comply with Volvo VNL packaging limitations. Topology optimization is used to aid engineering intuition in establishing appropriate load support paths, while multi-objective optimization subject to simultaneous quasi-static loading ensures minimal mass and deformation of the FUPDs.
Technical Paper

Optimized Rigid Side Underride Protection Device Designs for Tractor-Trailers and Straight Trucks

2014-04-01
2014-01-0565
This work describes the design and testing of side underride protection devices (SUPD) for tractor-trailers and straight trucks. Its goal is to reduce the incompatibility between small passenger cars and these large vehicles during side collisions. The purpose of these crash attenuating guards is to minimize occupant injury and passenger compartment intrusion. The methods presented utilize a regulation previously created and published for testing the effectiveness of these devices based on the principles of a force application device already implemented in the Canadian rear underride guard regulation. Topology and multi-objective optimization design processes are outlined using a proposed design road map to create the most feasible SUPD. The test vehicle in question is a 2010 Toyota Yaris which represents the 1100C class of vehicle from the Manual for Assessing Safety Hardware (MASH).
Technical Paper

Development of a Modified Off-Road Rigid Ring Tire Model for Heavy Trucks

2014-04-01
2014-01-0878
The rigid-ring tire model is a simplified tire model that describes a tire's behaviour under known conditions through various in-plane and out-of-plane parameters. The complex structure of the tire model is simplified into a spring-mass-damper system and can have its behaviour parameterized using principles of mechanical vibrations. By designing non-linear simulations of the tire model in specific situations, these parameters can be determined. They include, but are not limited to, the cornering stiffness, vertical damping constants, self-aligning torque stiffness and relaxation length. In addition, off-road parameters can be determined using similar methods to parameterize the tire model's behaviour in soft soils. By using Finite Element Analysis (FEA) modeling methods, validated soil models are introduced to the simulations to find additional soft soil parameters.
Technical Paper

Direct Yaw Control Based on Optimal Longitudinal Tire Forces for 8×8 Combat Vehicle

2021-04-06
2021-01-0261
This paper proposes an active chassis control strategy for an Eight-wheel drive/Four-wheel steering (8WD/4WS) combat vehicle, where only the first and second axles’ wheels are steerable, while the third and fourth axles’ wheels are non-steerable. Utilizing torque vectoring and differential braking control to improve its lateral dynamics at limit handling. Due to the non-linear characteristics of the tires and its friction limit, the vehicle may exhibit instable behavior during cornering maneuvers. It is well known that the tire longitudinal and lateral forces are shared, if longitudinal forces increased, slip ratio will increase and causing reduction in lateral forces that may cause the vehicle to drift out or spinning. Accordingly, the tires forces need to be optimally distributed based on vertical loads for each tire to prevent it from reaching the friction limit based on Friction Ellipse Theorem.
Technical Paper

Front Underride Protection Devices (FUPDs): Multi-Objective Optimization

2015-04-14
2015-01-1488
This work investigates a multi-objective optimization approach for minimizing design parameters for Front Underride Protection Devices (FUPDs). FUPDs are a structural element for heavy vehicles to improve crashworthiness and prevent underride in head-on collision with another vehicle. The developed dsFUPD F9 design for a Volvo VNL was subjected to modified ECE R93 testing with results utilized in the optimization process. The optimization function utilized varying member thickness to minimize deformation and system mass. Enhancements to the function were investigated by introducing variable materials and objectifying material cost. Alternative approaches for optimization was also needed to be explored. Metamodel-based and Direct simulation optimization strategies were compared to observe there performance and optimal designs. NSGA-II, SPEA-II Genetic Algorithms and Adaptive Simulated Annealing algorithms were under investigation in combination with three meta-modeling techniques.
Technical Paper

Advanced Analytical Truck Tires-Terrain Interaction Model

2021-04-06
2021-01-0329
This paper focuses on developing an advanced analytical tire-terrain interaction model for full vehicle performance prediction purposes. The truck tire size 315/80R22.5 is modeled using the Finite Element Analysis (FEA) technique and validated against manufacturer experimental data in static and dynamic domains. While the terrain is modeled using Smoothed-Particle Hydrodynamics (SPH) technique and calibrated using experimental results of pressure-sinkage and direct shear tests. The contact between the FEA tire model and the SPH soil model is defined using the node symmetric node to segment with the edge treatment algorithm. The model setup consists of four tires appended back to back over a box filled with soil particles to represent a multi-axle off-road truck. The distances between the four tires are similar to the distances between the four axles of an off-road truck.
Journal Article

Modelling of Off-Road Truck Tire-Rim Slip Using Finite Element Analysis

2022-03-29
2022-01-0882
Slip or relative rotation between the tire and rim is a significant concern for vehicle operation and wheel manufacturing since it leads to wheel imbalance and vibration as well as power losses. A slip situation typically occurs due to improper bead lubrication and mounting, irregularities in the bead seat, and extreme loading conditions with high torques and low tire pressures. Currently, there are relatively few published studies on the tire-rim interface, and they mainly focus on topics such as the mounting process, load transfer, and friction modelling. This leaves a gap to explore the measurement and variation of gross tire-rim slip under the dynamic conditions of a driven tire. In this paper, a previously developed and validated FEA truck tire model was modified to include a frictional contact surface between the tire and rim, and then the slip ratio between the tire and rim was measured under different operating conditions.
Technical Paper

Investigation of Truck Tire Rubber Material Definitions Using Finite Element Analysis

2024-04-09
2024-01-2648
This paper investigates the tire-road interaction for tires equipped with two different solid rubber material definitions within a Finite Element Analysis virtual environment, ESI PAMCRASH. A Mixed Service Drive truck tire sized 315/80R22.5 is designed with two different solid rubber material definitions: a legacy hyperelastic solid Mooney-Rivlin material definition and an Ogden hyperelastic solid material definition. The popular Mooney-Rivlin is a material definition for solid rubber simulation that is not built with element elimination and is not easily applicable to thermal applications. The Ogden hyperelastic material definition for rubber simulations allows for element destruction. Therefore, it is of interest and more suited for designing a tire model with wear and thermal capabilities.
Technical Paper

Fourth Axle Steering Control of an 8x8 Scaled Electric Combat Vehicle

2024-04-09
2024-01-2763
With the rise in demand, advanced steering control and electric vehicle technology are rapidly developing in modern times. Due to a controller's role as a backbone for the modern vehicle, its study has become increasingly crucial. This research proposes a novel 4th axle steering (4AS) feedforward controller that utilizes the first, second and fourth axle steering control for an 8x8 scaled electric combat vehicle. The vehicle is tested using the predefined path following. The novel 4AS controller is then compared to the Ackermann steering condition at different speeds. In the scaled vehicle used for this research, each wheel is independently driven by an in-wheel motor, while the steering is carried out by linear actuators. Individual eight-wheel steering control systems are designed and installed on the scaled vehicle to evaluate the driving performance from low speed to high speed. The 4AS steering method is implemented to improve the stability of the scaled vehicle at high speeds.
X