Refine Your Search

Search Results

Author:
Viewing 1 to 4 of 4
Technical Paper

Simulation and Testing of a Suite of Field Relevant Rollovers

2004-03-08
2004-01-0335
Automotive rollover is a complex mechanical phenomenon. In order to understand the mechanism of rollover and develop any potential countermeasures for occupant protection, efficient and repeatable laboratory tests are necessary. However, these tests are not well understood and are still an active area of research interest. It is not always easy or intuitive to estimate the necessary initial and boundary conditions for such tests to assure repeatability. This task can be even more challenging when rollover is a second or third event (e.g. frontal impact followed by a rollover). In addition, often vehicle and occupant kinematics need to be estimated a-priori, first for the safe operation of the crew and equipment safety, and second for capturing and recording the event. It is important to achieve the required vehicle kinematics in an efficient manner and thus reduce repetitive tests. Mathematical modeling of the phenomenon can greatly assist in understanding such kinematics.
Technical Paper

The Effectiveness of Adjustable Pedals Usage

2000-03-06
2000-01-0172
This study evaluates the comfort benefits of adjustable pedals by determining their effect on the distance between the occupant and steering wheel, occupant posture and foot kinematics. For the study, 20 volunteers were tested in a small and large vehicle equipped with adjustable pedals. Twenty volunteers were tested in a small and large vehicle at 3 pedal positions: normal, comfortable and maximum tolerable. In the small car, the decrease in ankle-to-steering wheel distance between the normal and comfortable position was higher in the short-statured group than the medium group. The mean change in chest-to-steering wheel distance was about 50 mm in the medium and in the order of 40 mm in the short group. The seatback angle increased by 2° in the medium group and decreased by 3° in the short group. In the large car, the decrease in ankle-to-steering wheel distance between comfortable and the normal position was about 70 mm in the short-statured and medium group.
Technical Paper

Driver Injuries in US Single-Event Rollovers

2000-03-06
2000-01-0633
The purpose of this paper is to investigate occupant injuries which may be sustained during a single-event crash with known roll mechanism. The data was obtained from the weighted National Automotive Sampling System/ Crashworthiness Data System (NASS-CDS) for calendar years 1992 to 1996. The effect of number of rollover turns, roll direction, ejection and belt usage on driver injury responses was analyzed in single-event trip-overs. Trip-overs were chosen for the analysis because they account for over 50% of rollover crashes. The number of rollovers was divided in 3 categories: ¼ to ½ turn, ¾ to 1 turn and above 1 turn. Roll direction was either roll-left or a rollright along the longitudinal axis of the vehicle. Roll-left represents a roll with the driver side leading, while a roll right is with the right front passenger side leading. In the database used in this study, there were three times more belted drivers than unbelted.
Technical Paper

US and UK Belted Driver Injuries with and without Airbag Deployments - A Field Data Analysis

1999-03-01
1999-01-0633
This study compares the effect of US and European airbag deployments on injury outcomes for belted drivers in frontal crashes. Driver weight, height and seat track position was also examined in relation to those outcomes. This information may help to prioritize and guide the logic for “Smart” airbags. For the study, only airbag-equipped cars were considered. Two accident databases were used: 1) the weighted and unweighted National Accident Sampling System (NASS-CDS) from the US, calendar years 1995 to 1996, and 2) the unweighted Co-operative Crash Injury Study (CCIS) from the UK, calendar years 1992 to 1998. The parameters investigated were Injury Severity Score (ISS), Equivalent Test Speed (ETS), occupant weight, occupant height and seat location. For US drivers, the injury rate and occurrence were calculated using weighted data, while for UK drivers, the rate and occurrence were obtained using unweighted data.
X