Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Control of Powertrain Noise Using a Frequency Domain Filtered-x LMS Algorithm

2009-05-19
2009-01-2145
An enhanced, frequency domain filtered-x least mean square (LMS) algorithm is proposed as the basis for an active control system for treating powertrain noise. There are primarily three advantages of this approach: (i) saving of computing time especially for long controller’s filter length; (ii) more accurate estimation of the gradient due to the sample averaging of the whole data block; and (iii) capacity for rapid convergence when the adaptation parameter is correctly adjusted for each frequency bin. Unlike traditional active noise control techniques for suppressing response, the proposed frequency domain FXLMS algorithm is targeted at tuning vehicle interior response in order to achieve a desirable sound quality. The proposed control algorithm is studied numerically by applying the analysis to treat vehicle interior noise represented by either measured or predicted cavity acoustic transfer functions.
Technical Paper

Noise Source Identification in an Automotive Powerplant

2003-05-05
2003-01-1695
An application involving noise source reconstruction on a full automotive powerplant including the engine, manifolds and the transmission is considered herein, to demonstrate the versatility of modern generalized acoustical holography. The complex source geometry necessitates measurements on non-conforming surfaces. The acoustic pressures were experimentally acquired at three different engine excitations. Accelerometers were mounted at select locations on the powerplant in order to study the accuracy of the reconstructed vibrations from acoustical holography. Through a series of synthetically generated holograms with added random noise, it is conclusively demonstrated that the error margins in the reconstructed vibrations on the powerplant are consistent with errors in reconstructed vibrations from numerically synthesized holograms of a similar Signal to Noise Ratio (SNR).
Technical Paper

The Ford Motor Company Spin-Torsional NVH Test Facility-2

2003-05-05
2003-01-1684
The Ford Spin Torsional NVH TEST Facility developed and completed in 1999 as a state-of-the-art powertrain NVH development facility(1). Since then, various designed capabilities have been verified with test vehicles for multiple applications to facilitate powertrain NVH development. This paper describes fundamental capabilities of the test facility, including input module to simulate engine torque signatures of arbitrary engines (“virtual engine” capability) and absorbing dynamometer systems, functioning as a precision 4WD/AWD chassis dynamometer. The correlation between road test/chassis dynamometer test and Spin-Torsional test is then illustrated, verifying high correlation of vehicle/sub-system responses between conventional vehicle testing and Spin-Torsional test results.
Technical Paper

High Frequency Gear Whine Control by Driveshaft Design Optimization

2003-05-05
2003-01-1478
Generation mechanism of transmission gear whine varies significantly by gear position, frequency and path/amplifier of the total system. Although controlling the source, namely transmission error/dynamic meshing force of the gears is desirable; it is not always feasible as well as most effective. This paper describes the root cause analyses of high frequency gear whine (overdrive position) of commercial vehicle, which combined in-depth experimental and CAE analyses. The generation mechanism of the gear whine is clarified efficiently utilizing Ford Spin-Torsional AWD NVH Test Facility, state-of-the-art Powertrain NVH development test cell, combining vehicle and sub-system NVH measurement. The analyses results showed the O/D gear whine is driveshaft airborne, due to alignment of driveshaft higher bending resonance to air-borne mode (“breathing mode”).
Technical Paper

The Ford Motor Company Spin-Torsional NVH Test Facility

1999-05-17
1999-01-1837
An All Wheel Drive Spin-Torsional Dynamometer facility has been constructed at the Advanced Engineering Center of Ford Motor Company, adding unique capability for powertrain NVH testing. This state-of-the-art facility is designed to concurrently deliver controlled rotational and torsional engine inputs to the drivetrain. While the facility supports the use of a live engine for input, it is also equipped with an engine simulator to allow detailed examination of the NVH characteristics of new powertrain configurations before prototype powerplants are available, without the need for a live engine. This will reduce development timing for new powertrains significantly. The virtual engine consists of a driving dynamometer coupled with a high frequency servo-hydraulic torsional actuator.
Technical Paper

Application of Nearfield Acoustic Holography for Evaluating the Design of Engine Cover

1999-05-17
1999-01-1848
Engine noise is still one of the dominating sources to vehicle interior noise. Among the engine components, engine covers are often the significant contributors to overall engine noise, requiring in-depth acoustic investigation to achieve substantial reduction. Ford Motor Company has acquired a 150 channel Nearfield Acoustic Holography (NAH) system for powertrain NVH development. This system provides new acoustic information with various metrics and visualization of non-stationary sound field in time domain to facilitate better understanding of noise generation/propagation mechanism. This paper focus on investigating the design of engine covers which radiate chain whine, fully utilizing the capability of this system including spatial transformation. Based on reconstruction of noise sources, effective design change to achieve significant reduction of chain whine is derived and then verified in very short time compared to previous methods.
X