Refine Your Search

Search Results

Author:
Viewing 1 to 13 of 13
Technical Paper

Operating Characteristics of a Spark-Ignition Engine Using Hydrogen and Ammonia

2023-09-29
2023-32-0105
In this research, the operating characteristics of a spark-ignition engine using ammonia were evaluated. Different compression ratios and two pistons with different squish velocities were used. Results show that the combustion duration was shortened with high compression ratio and high squish piston, and the stable operation range of the engine was expanded. BMEP and brake thermal efficiency did not change significantly among the stable operation range for variations of compression ratio, squish velocity. Due to the reduction effect of unburned ammonia, NOx emissions decreased when ammonia mole fraction increased. Most of the unburned ammonia was emitted from the quenching layer.
Technical Paper

Improvement of Atomization Characteristics of a Micro Nozzle Array Type Gasoline Injector

2009-12-13
2009-28-0041
Atomization characteristics of an ultrasonic fuel injector using a micro nozzle array were improved by change of horn geometries. Micro nozzles whose exit diameter d = 3 µm are mounted on a thin metal film, and the number of micro nozzles was varied from 2.0 × 104 to 1.2 × 105. Gasoline is periodically pushed out from the micro nozzles at frequencies from 62 to 65 kHz. A disk type PZT (Lead zirconium titanate) is used as an ultrasonic oscillator, and the oscillation is amplified by an axi-symmetric step-type horn. The oscillation amplitude is proportional to the area ratio of the horn. The number of micro nozzles increases with the increase in the small end diameter of the horn, while the oscillation amplitude decreases at the same time. In order to increase the fuel flow rate, the horn small end diameter Ds was varied from 10.5 to 25 mm, while the large end diameter is fixed at 30 mm.
Technical Paper

Application of Scavenging-Port Injection of CNG to a Boat Engine at Running Conditions

2009-11-03
2009-32-0077
In a boat two-stroke two-cylinder engine, SC-port fuel injection of CNG was applied at running condition in comparison with the fuelling with a gas-mixer. Three methods of tests were employed; operation at a test-bench, at an anchored condition and on a running boat. In a lower engine speed, the beneficial effect of higher thermal efficiency was obtained, while in higher engine speed range especially at the running condition, it has the inverse effect of lower thermal efficiency. It is based on the limited range of lower injection rate of the fuel injectors, and thus the fuel injection rate of this type of fuel injectors has a key role of developing the technology of the SC-port injection.
Technical Paper

A CNG Two Stroke Cycle S.I. Engine Using Intermittent Low Pressure Fuel Injection from Scavenging Ports

2008-01-09
2008-28-0004
Performance of a CNG (Compressed natural gas) two stroke cycle S.I. engine using intermittent low pressure fuel injection from scavenging ports is investigated experimentally. The test engine is a two cylinder, 398 cm3, two stroke cycle spark ignition engine. Gaseous fuel injectors are attached at the engine block, and a CNG is injected into the scavenging passage through a fuel injection pipe. The fuel injection pressure is set at 0.255 MPa, and the fuel is injected intermittently during the scavenging process. The length and tip geometry of the fuel injection pipe are varied, and the effect on the engine performance is investigated. Using the scavenging port fuel injection, the BSFC is reduced by 25 %, and the lean burn limit extends from λ = 1.2 to 1.46, at the maximum. The peak of the NOx emission shifts to leaner side, and the THC emission is reduced by 47 % at the maximum.
Technical Paper

Effect of Fuel Injection Rate on the Performance of a 2-Stroke CNG Spark-Ignition Engine with Scavenging-Port Injection

2007-10-30
2007-32-0031
The most serious problem in a 2-stroke spark-ignition engine is poor trapping of fresh charge. To solve this problem, a scavenging-port injection was applied, and a fuel injection pipe (FIP) was installed at the injector tip. In a previous study, it was shown that the BSFC and emission characteristics were drastically improved. In the present study, effect of increase in the fuel injection rate was investigated. It is shown that the BSFC and the THC emissions improved at high engine speeds, while they slightly deteriorate at low engine speeds. The increase in the fuel injection rate is effective particularly at high engine speeds, where the scavenging duration becomes shorter.
Technical Paper

Spray Characteristics of an Ultrasonic Gasoline Injector Using a Micro Nozzle Array

2007-10-30
2007-32-0050
Effects of horn geometry on the atomization characteristics of an ultrasonic fuel injector using a micro nozzle array were investigated experimentally. Micro nozzles whose exit diameter d = 3 μm are mounted on a thin metal film. The number of the micro nozzles is from 2.0 × 104 to 1.2 × 105. Using an ultrasonic oscillator, gasoline is periodically pushed out from the micro nozzles at a frequency from 62 to 65 kHz. A disk type PZT (Lead zirconium titanate) is used as an ultrasonic oscillator, and the oscillation is amplified using a step-type horn. The input voltage to the PZT is varied from 0 to 200 V. To increase the fuel flow rate, the horn small end diameter DS is increased from 10.5 to 25 mm, while the large end diameter is fixed at 30 mm. To prevent forming a liquid film on the micro nozzle array, gutters are machined on the small end of the horn. It is shown that the SMD (Sauter mean diameter) of the spray is almost uniform around 10 to 14 μm.
Technical Paper

A Study on Optimization of an Over-Expansion Cycle Gasoline Engine with Late-Closing of Intake Valves

2007-09-16
2007-24-0089
This study presents the possibility of realizing better thermal efficiency in a spark-ignition engine with over-expansion cycle. The test engine with the displacement volume of 649cc was used together with four kinds of expansion ratios (geometric compression ratio) from 10 to 25, and four sets of intake valve closure timings from 0 to 110 ° C.A. ABDC. In previous studies, the indicated thermal efficiency reached 48% However, there was a problem that the maximum output was reduced to almost half compared with the conventional engine, since the effective displacement volume was decreased with decreasing the substantial compression ratio (εc). As a method of solving this problem, supercharging was applied by using compressed air supplied from an external compressor.
Technical Paper

A Measurement of Instantaneous Flow Rate of an Automotive Gaseous Fuel Injector

2007-09-16
2007-24-0008
Injection rate measurement of an automotive gaseous fuel injector was carried out by use of a one-dimensional pipe flow. A production gaseous fuel injector for an NGV (Natural gas vehicle) was used, which is for an intake port fuel injection. The injection pressure was set at 255 kPa(g), and the injection duration was varied from 3.4 to 20 msec. Nitrogen gas was used as the test gas. The test gas was injected into a pipe from the injector, and the static pressure history was acquired with a piezoelectric pressure transducer. One-dimensional, compressible, inviscid, adiabatic flow was assumed, and the instantaneous mass flow rate inside the pipe was estimated. By integrating the injection rate during the injection duration, the total amount of mass flow per one stroke was calculated. Calibration test was carried out by use of a pressure vessel, from which the total mass flow during one stroke was estimated.
Technical Paper

LDA Measurement of an Intermittent High-Speed Flow inside a Micro Wave Rotor Cell

2007-01-23
2007-01-0010
Velocity measurement of an intermittent high-speed flow inside a micro wave rotor cell was carried out using a laser Doppler anemometry (LDA). The cell is 3 × 3 mm rectangular tube, whose length is 42 mm. The pressure ratio and rotor speed of the wave rotor were set at 2.5 and 5,000 rpm, respectively. Ethanol droplets were seeded into the flow as scattering particles. By use of laser beam expanders, the probe volume of the LDA optics was minimized, and sub-millimeter special resolution is realized while a wide velocity range (-100 to 300 m/s) is kept. It is shown that the velocity histories at local positions inside the wave rotor cell can be obtained with the LDA optics. The rapid velocity increase and decrease, due to the primary and secondary shock waves, are observed, and the propagation speed of the shock waves was estimated. It is shown that the velocity profile inside the cell is flat and that the boundary layer thickness inside the cell is smaller than 0.5 mm.
Technical Paper

Basic Aspect of Combustion of CNG Incylinder Direct-Injection with Spark-Ignition

2005-10-23
2005-26-352
This paper presents basic combustion behavior of a compressed natural gas directly injected into a cylinder with spark-ignition. Experiments were conducted in a rapid-compression machine (RCM) with the cylinder bore of 80 mm, the stroke of 180 mm and the compression ratio of 10 at TDC. A CNG was injected through specially designed injectors which were installed at the side of combustion chamber with three modes, twin injectors in parallel, twin injectors in opposed and single injector. Combustion products were also measured with an infra-red gas analyzer. Direct photographs were taken with a high-speed video for observation. Effect of fuel injection timing was examined at constant spark timing together with the influence of injection mode. Results show several beneficial combustion characteristics of direct injection combustion using CNG. Combining with the results of combustion products and photographic observation, the combustion mechanism is discussed.
Technical Paper

Characteristics of CNG Direct Injection with Auto-Ignition

2005-10-23
2005-26-358
Characteristics of compressed natural gas (CNG) direct injection auto-ignition were investigated experimentally. A rapid compression machine (RCM) with the compression ratio of 10 was used. The diameter and thickness of the combustion chamber are 80 mm and 20 mm, respectively. After the compression start, fuel was directly injected with a single hole injector at the injection pressure of 7.0 MPa, and auto-ignition takes place. The fuel injection timing was varied from 50 ms to 60 ms from the compression start. Two kinds of natural gasses were tested; 12A (CH4: 99.1 %) and 13A (CH4: 86.3 %, C2H6: 5.2 %, C3H8: 1.9 % and others). A glow plug was installed in the cylinder in order to assist the ignition, which was set at 30 mm downstream from the fuel injector nozzle exit. Two kinds of auto-ignition processes were observed. For CNG 12A, auto-ignition always takes place after the end of the fuel injection. The ignition delay is relatively long (40 to 80 ms) and the fluctuation is large.
Technical Paper

Effects of Compression Ratio on Characteristics of PCCI Diesel Combustion with a Hollow Cone Spray

2005-05-11
2005-01-2130
Characteristics of premixed charge compression ignition (PCCI) Diesel combustion were investigated experimentally. In a PCCI engine, the operatable range is limited by the cyclic variation at low loads and the intensive knock at high loads. In the present study, effects of compression ratio on the characteristics of the PCCI combustion are investigated experimentally. The compression ratio was varied from 18.8 to 14.8. For the early injection timing, the high load operation limit is extended from BMEP = 0.22 MPa to 0.40 MPa. At the same time, the minimum BSFC for the early injection timing decreases from 330 g/kWh to 230 g/kWh.
Technical Paper

Characteristics of HCCI Diesel Combustion Operated with a Hollow Cone Spray

2003-05-19
2003-01-1823
This paper presents two factors for improving the performance and emissions characteristics in HCCI diesel combustion, one is reducing compression ratio and another is changing the injector position. In a previous study, it was shown that HCCI diesel combustion could be realized by utilizing a hollow-cone spray with normal injection pressure. However there remained two major problems of engine instability and increase in BSFC (decrease in brake thermal efficiency). By reducing the compression ratio from 18.8 to 16.8, the engine stability was much improved to the level of conventional diesel combustion and the increase in BSFC became almost half, which was mainly due to the change of combustion phasing. In addition to this, application of 5 mm inside position of the injector realized almost no penalty of BSFC at higher load condition.
X