Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Prediction of Cycle-to-Cycle Variation of In-Cylinder Flow in a Motored Engine

1993-03-01
930066
A prediction model of the cycle-to-cycle variation of the in-cylinder flow in IC engines which employs the time averaged k-ε turbulence model is proposed. The concept is based on an assumption that the power spectrum of the cycle-to-cycle variation can be deduced from the power spectra of both the mean velocity and turbulence intensity. To validate this model, in-cylinder velocity measurement in a transparent cylinder engine with a 2-valve cylinder-head is made using an LDV system. Comparisons of in-cylinder flow fields between the calculation and measurement show a good agreement in the cycle-to-cycle variation as well as the turbulence intensity. Finally, this model is applied to three kinds of flow fields to examine how the cycle-to-cycle variation may be effected. As a result, it is found that the swirl flow is effective to reduce the cycle-to-cycle variation, while the tumbling flow enhances the turbulence generation around the compression TDC.
Technical Paper

Stratification of Swirl Intensity in the Axial Direction for Control of Turbulence Generation During the Compression Stroke

1991-02-01
910261
Control of turbulence during the compression stroke is suggested by both theoretical calculations and experimental results obtained with an LDV measurement in a motored engine. The authors have found experimentally that when an axial distribution of swirl intensity exists, a large-scale annular vortex is formed inside the cylinder during the compression stroke and this vortex generates and transports turbulence energy. A numerical calculation is adopted to elucidate this phenomenon. Then, an axial stratification of swirl intensity is found to generate a large-scale annular vortex during the compression stroke by an interaction between the piston motion and the axial pressure gradient. The initial swirl profile is parametrically varied to assess its effect on the turbulence parameters. Among calculated results, turbulence energy is enhanced strongest when the swirl intensity is highest at the piston top surface and lowest at the bottom surface of the cylinder head.
Technical Paper

Particulate Formation and Flame Structure in Diesel Engines

1989-02-01
890436
The present paper describes the particulate formation in diesel flames considering the flame structure and its similarity to that of gaseous turbulent diffusion flames. A comparison of spatial variations of soot concentration, equivalence ratio and flame temperature between diesel flames and turbulent diffusion flames reveals the facts that soot particles are mostly farmed in a region where the equivalence ratio is near stoichiometric and the flame temperature is the highest in both flames, and that in diesel flames this region exists generally near the flame tip. A close inspection of high speed photographs of diesel flames suggests the three major routes of soot emission from diesel engines: quenching of flamelets detached from the flame tip due to 1) the flame impingement onto the wall; and 2) cooling of the flamelets by the bulk air; and 3) survival of soot containing flamelets inside the flame.
X