Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Biomechanics of Lumbar Motion-Segments in Dynamic Compression

2017-11-13
2017-22-0001
Recent epidemiology studies have reported increase in lumbar spine injuries in frontal crashes. Whole human body finite element models (FEHBM) are frequently used to delineate mechanisms of such injuries. However, the accuracy of these models in mimicking the response of human spine relies on the characterization data of the spine model. The current study set out to generate characterization data that can be input to FEHBM lumbar spine, to obtain biofidelic responses from the models. Twenty-five lumbar functional spinal units were tested under compressive loading. A hydraulic testing machine was used to load the superior ends of the specimens. A 75N load was placed on the superior PMMA to remove the laxity in the joint and mimic the physiological load. There were three loading sequences, namely, preconditioning, 0.5 m/s (non-injurious) and 1.0 m/s (failure). Forces and displacements were collected using six-axis load cell and VICON targets.
Technical Paper

Oblique Loading in Post Mortem Human Surrogates from Vehicle Lateral ImpactTests Using Chestbands

2015-11-09
2015-22-0001
While numerous studies have been conducted to determine side impact responses of Post Mortem Human Surrogates (PMHS) using sled and other equipment, experiments using the biological surrogate in modern full-scale vehicles are not available. The present study investigated the presence of oblique loading in moving deformable barrier and pole tests. Three-point belt restrained PMHS were positioned in the left front and left rear seats in the former and left front seat in the latter condition and tested according to consumer testing protocols. Three chestbands were used in each specimen (upper, middle and lower thorax). Accelerometers were secured to the skull, shoulder, upper, middle and lower thoracic vertebrae, sternum, and sacrum. Chestband signals were processed to determine magnitudes and angulations of peak deflections. The magnitude and timing of various signal peaks are given. Vehicle accelerations, door velocities, and seat belt loads are also given.
Technical Paper

Dynamic Responses of Intact Post Mortem Human Surrogates from Inferior-to-Superior Loading at the Pelvis

2014-11-10
2014-22-0005
During certain events such as underbody blasts due to improvised explosive devices, occupants in military vehicles are exposed to inferior-to-superior loading from the pelvis. Injuries to the pelvis-sacrum-lumbar spine complex have been reported from these events. The mechanism of load transmission and potential variables defining the migration of injuries between pelvis and or spinal structures are not defined. This study applied inferior-to-superior impacts to the tuberosities of the ischium of supine-positioned five post mortem human subjects (PMHS) using different acceleration profiles, defined using shape, magnitude and duration parameters. Seventeen tests were conducted. Overlay temporal plots were presented for normalized (impulse momentum approach) forces and accelerations of the sacrum and spine.
Technical Paper

Oblique Lateral Impact Biofidelity Deflection Corridors from Post Mortem Human Surrogates

2013-11-11
2013-22-0016
The objective of the study was to determine the thorax and abdomen deflection-time corridors in oblique side impacts. Data were analyzed from Post Mortem Human Surrogate (PMHS) sled tests, certain aspects of which were previously published. A modular and scalable anthropometry-specific segmented load-wall system was fixed to the platform of the sled. Region-specific forces were recorded from load cells attached to the load-wall plates. The thorax and abdomen regions were instrumented with chestbands, and deflection contours were obtained. Biomechanical responses were processed using the impulse-momentum normalization method and scaled to the mid-size male mass, 76-kg. The individual effective masses of the thorax and abdomen were used to determine the scale factors in each sled test, thus using the response from each experiment. The maximum deflections and their times of attainments were obtained, and mean and plus minus one standard deviation corridors were derived.
X