Refine Your Search

Search Results

Author:
Viewing 1 to 5 of 5
Technical Paper

Mechanical Properties of Gear Steels and Other Perspective Light Weight Materials for Gear Applications

2006-10-31
2006-01-3578
To improve fuel economy and possibly reduce product cost, light weight and high power density has been a development goal for commercial vehicle axle components. Light weight materials, such as aluminum alloys and polymer materials, as well as polymer matrix composite materials have been applied in various automotive components. However it is still a huge challenge to apply light weight materials in components which are subject to heavy load and thus have high stresses, such as gears for commercial vehicle axles or transmissions. To understand and illustrate this challenge, in this paper we will report and review the current state of art of carburized gear steels properties and performance.
Technical Paper

Cyclic Deformation, Fatigue and Fracture Toughness of a Nano-Composite High Strength Steel

2005-11-01
2005-01-3629
A nano-composite high strength (NCHS) steel was tested and evaluated in this work. Monotonic tension, strain controlled fatigue and fracture toughness tests were conducted at ambient temperature. Chemical composition, microstructure and fractography analysis were also performed. The NCHS steel showed excellent combination of high strength, high ductility and high fracture toughness with relatively low alloy content, compared with a S7 tool steel. Fatigue performance of the NCHS steel was also better than that of S7 tool steel. With the exceptional combination of high strength and high fracture toughness, the nano-composite high strength steel may have potential applications in gears, shafts, tools and dies where high fatigue performance, shock load resistance, wear and corrosion resistance is required.
Technical Paper

Contact Fatigue Tests and Contact Fatigue Life Analysis

2005-04-11
2005-01-0795
The main objective of this paper is to investigate contact fatigue life models and to evaluate the effect of surface finish on contact fatigue life. The effect of surface finish on contact fatigue life was investigated experimentally using two roller contact fatigue tests. The test samples, i.e. rollers, were carburized, quenched and then tempered. Two different roller surface finishes were evaluated: machined and as heat-treated surface (baseline rough surface) vs. super finished surface (smooth). Because many factors are involved in sliding/rolling contact fatigue, contact fatigue modeling is still in the early development stage. In this work, we will analyze our contact fatigue test results and correlate contact fatigue life with several empirical contact fatigue models, such as the lambda ratio, a new surface texture parameter, and a normalized pitting model which includes Hertzian Stress, sliding, surface roughness and oil film thickness.
Technical Paper

Monotonic Tension, Strain Controlled Fatigue and Fracture Toughness Properties of a Ductile Iron

2003-03-03
2003-01-0832
The objective of this work is to test and develop monotonic tensile properties and strain controlled fatigue properties of a cast ductile iron. The test data and the related material constants will be used in conjunction with vehicle loading data to perform finite element stress-strain analysis and fatigue life prediction analysis to aid in the design of automotive components made from ductile iron. Currently, such material property data does not exist in the literature for this particular grade of ductile iron. Monotonic tension and fully reversed strain controlled fatigue tests were conducted by following ASTM E-8, ASTM E-606, and SAE J-1099 on samples machined from the cast ductile iron. Monotonic tensile properties were obtained, including Young's modulus, yield strength, ultimate tensile strength, elongation, reduction in area, strength coefficient K, and strain hardening exponent n.
Technical Paper

Piston Ring Microwelding Phenomenon and Methods of Prevention

1996-02-01
960745
This paper will discuss metallurgical failure analysis of microwelded iron piston rings and aluminum pistons in internal combustion engines. “Microwelding” is defined as adherence of sporadic particles of aluminum from the piston to the bottom side of the piston ring. The paper will describe the high output water-cooled two-stroke engine accelerated test which reproduces the microwelding phenomenon in 30 minutes. SEM and EDS analyses have been used in the identification of the mechanism of this surface damage. Evidence of extreme temperatures during pre-ignition and normal operating conditions was obtained by studying hardness distributions through the piston cross section. As a potential solution, decreasing temperature through use of a thermal barrier coating was investigated. Also, test results of piston ring coatings, including molybdenum and tungsten disulfide, electroplated chromium, PVD titanium and chromium nitride, and fluoroplastic materials were compared.
X