Refine Your Search

Topic

Search Results

Technical Paper

Active Fuelling of a Passenger Car Sized Pre-Chamber Ignition System with Gaseous Components of Gasoline

2020-09-15
2020-01-2045
Homogeneous lean or diluted combustion can significantly increase the efficiency of spark ignition engines. Active fuelled pre-chamber ignition systems can overcome the problem that common spark ignitions systems are incapable to ignite strongly diluted mixtures. A small portion of the charge is burned in a separated chamber, which is connected to the main chamber by multiple small orifices. The combustion inside the pre-chamber generates hot gases, which penetrate into the main chamber and ignite the diluted charge on multiple sites. Active pre-chamber ignition systems feature a separate fuelling or scavenging system in addition to the one of the main combustion chambers. Preferably, gaseous fuel is used for the pre-chamber fuelling allowing better dosing accuracy and mixture preparation inside the pre-chamber.
Technical Paper

GDI Sprays with up to 200 MPa Fuel Pressure and Comparison of Diesel-like and Gasoline-Like Injector Designs

2020-09-15
2020-01-2104
To address stricter emission limits, GDI develops to increased fuel pressure. Current gasoline injectors are already operating at a pressure of up to 35 MPa and an elevation is still promising lower particle emissions and increased efficiency. There have been only few studies of GDI sprays at pressures >50 MPa published. Contrary, in diesel engines injection pressure up to 250 MPa are common. GDI and diesel injector designs limit liquid penetration in different ways to avoid wall wetting, which has a negative impact on emissions in GDI combustion concepts. With elevated fuel pressure the question arises which design concept limits the penetration depth more effectively. To investigate the properties of high pressure sprays, a GDI injector (100 MPa max. fuel pressure) and an injector with diesel-like design are compared. High speed Shadowgraphy and Schlieren technique are used to gather information of liquid and vapor phase propagation.
Technical Paper

Influence of Nozzle Geometry Parameters on the Propagation of Fuel Spray Investigated with Linear and Non-Linear Regression Models

2020-09-15
2020-01-2114
The nozzle geometry of fuel injectors has a strong influence on turbulences and pressure gradients within the nozzle flow. The flow situation at the nozzle outlet determines the spray propagation into the ambient atmosphere. This spray penetration is critical for gasoline direct injection (GDI) systems. When the spray penetration is too high, it can cause wall and cylinder impingement, which increases particle emissions drastically. However, prediction of fuel spray propagation in dependency of nozzle hole geometry is difficult due to the large difference in scale between the nozzle flow and the spray development. Because of this, spray measurements with varying nozzle geometry parameters and statistical evaluation of these datasets are useful for the future development of fuel injectors. In this study, shadowgraphy measurements of real-size single-hole glass nozzles are presented. The nozzles cover a wide range of geometry parameters relevant to a GDI system.
Journal Article

Time and Spatially Resolved Measurements of the Interaction of Combusting Diesel Spray and Walls with Elevated Temperatures

2012-09-10
2012-01-1726
The interaction between a combusting diesel spray and a wall at temperatures of 700K and 735K was investigated in a combustion chamber using optical measurement techniques. The temperatures were chosen as they appear in the range of the maximum piston surface temperatures of the latest production engines. Combustion was investigated with a dual camera setup, which is designed to take simultaneous pictures of the UV flame luminosity (FL_UV) and the visible flame luminosity (FL_VIS). The FL_UV is used to measure lean or stoichiometric combustion. The FL_VIS is capable of detecting the thermally excited soot. Mie scattering is used to study the liquid fuel phase. It was found that there is almost no FL_VIS signal visual in the 700K case, but a very strong signal in the 735K case. In general, one might expect that higher wall temperatures lead to an improved mixture formation and, consequently, lower soot production. However, the opposite was detected.
Journal Article

Investigation of Fuel Atomization and Evaporation of a DISI Injector Spray Under Homogeneous Charge Conditions

2013-04-08
2013-01-1597
Understanding the causal loop from injection to combustion in modern direct injection engines is essential to improve combustion and reduce emissions. In this work, the section from injection to fuel-evaporation in this causal loop was investigated using different optical measurement techniques, with a focus on drop size measurements using Phase Doppler Anemometry (PDA). One spray jet of a modern DISI multi-hole injector was investigated using gasoline RON 95 fuel and two single component alkane fuels (n-hexane / n-decane). In a first step the macroscopic spray formation and propagation of this spray jet were studied using a 2D-Mie-scattering technique in an optical injection chamber at homogenous charge DISI conditions. Furthermore, the droplet size distribution and mean diameter were determined spatially and temporally resolved for an ambient pressure of 0.3MPa and different ambient temperature (323K / 423K / 523K) conditions in the optical chamber using Phase Doppler Anemometry.
Journal Article

Investigation of Fuel Effects on Spray Atomization and Evaporation Studied for a Multi-hole DISI Injector with a Late Injection Timing

2011-08-30
2011-01-1982
The influence of fuel composition on sprays was studied in an injection chamber at DISI conditions with late injection timing. Fuels with high, mid and low volatility (n-hexane, n-heptane, n-decane) and a 3-component mixture with similar fuel properties like gasoline were investigated. The injection conditions were chosen to model suppressed or rapid evaporation. Mie scattering imaging and phase Doppler anemometry were used to investigate the liquid spray structure. A spray model was set up applying the CFD-Code OpenFOAM. The atomization was found to be different for n-decane that showed a smaller average droplet size due to viscosity dependence of injected mass. And for evaporating conditions, a stratification of the vapor components in the 3-component fuel spray was observed.
Technical Paper

Characteristics and Application of Gasoline Injectors to SI Engines by Means of Measured Liquid Fuel Distributions

1997-10-01
972947
The spray formation of two different gasoline port fuel injectors has been studied in three stages of the mixture formation process using measured liquid fuel distributions. The injector characteristics were determined in fundamental chamber experiments providing the time dependent spray penetration and the internal structure of the spray in quiescent air by a laser light sheet technique. For the sane injectors the interaction between port flow and spray was investigated inside the port of a production engine. A strong dependence of the fuel distribution inside the port on the engine operation point was found for both injectors. This fuel distribution provides information on wall film generation and the optimum orientation of the injector inside the suction pipe.
Technical Paper

Gasoline: Influence of Fuel-Oxygen on NOx-Emissions

1998-05-04
981366
Nitric oxides are the key pollutants emitted from SI engines today. In the work presented, the effect of different fuel-components on the NOx-emission of a four stroke SI engine and cross connections between different fuel properties were investigated in front of and behind the catalyst and compared to investigations described in literature. For the investigation presented a variety of different fuels has been produced. The content of aromatics, olefins, oxygen and the mid-range volatility has been changed systematically while only fuels with a good driveability were included in the investigation. The NOx-emission of 17 fuels tested was measured in front of and behind the catalyst. The tests were carried out with a single cylinder test engine using a constant air/fuel ratio.
Technical Paper

Optical Investigations on Partially Premixed Diesel Combustion for Different Operating Parameters

2008-04-14
2008-01-0041
Combustion processes with partially or fully premixed cylinder load combined with self-ignition provide high combustion efficiency and low emissions of Nitrogen Oxides (NOx) and particulate matter at the same time. Since the number of diesel operated passenger cars is still rising, it would be interesting, if such a combustion concept can be realized in an ordinary DI-Diesel engine which is operated with conventional diesel fuel. In this study, the influence of nozzle geometry, Tintake, pTDC and injection timing on the functioning chain of combustion was analyzed in a transparent single-cylinder diesel engine equipped with a common rail injection system by means of optical measurement techniques. Simultaneously, different optical diagnostics (laser-based and non laser-based) were used to study the fuel distribution, ignition and combustion in the combustion chamber of the optically accessible diesel engine. The liquid fuel was visualized by Mie scattering at 532nm.
Technical Paper

An Impulse Charging System for SI and Diesel Engines

2002-03-04
2002-01-1104
This paper describes the principles, effects and the potentials of impulse charging systems applied to SI and Diesel engines. In general, impulse charging is realized by closing the inlet port upstream of the inlet valve during the intake stroke with an additional switching device. The piston, moving towards bottom dead center, generates a vacuum inside the combustion chamber and inlet port. By opening the switching device abruptly, the sub-atmospheric pressure level induces an enhanced volumetric efficiency due to the significantly increased gas dynamic effects in the intake manifold. One major advantage of impulse charging in comparison to the well known supercharging techniques lies in the dynamic behavior. The charging effect can be realized within one engine cycle. Furthermore, impulse charging provides high low-end torque, a nearly constant torque over a wide engine speed range with charging rates from 20% to 30%.
Technical Paper

A Gasoline Fuelled Pre-Chamber Ignition System for Homogeneous Lean Combustion Processes

2016-10-24
2016-01-2176
Pre-chamber ignition systems enable the combustion of homogeneous lean mixtures in internal combustion engines with significantly increased thermal efficiency. Such ignition systems provide a much higher ignition energy compared to a common spark ignition by burning a small portion of the charge in a separate chamber, generating multiple ignition sites in the main combustion chamber and increasing the turbulent flame speed. Pre-chamber ignition systems are commonly used in large natural gas engines but the integration in automotive engines is not feasible so far due to the lack of suitable fuelling systems needed to keep the pre-chamber mixture stoichiometric at lean operation of the engine. Based on preliminary investigations we developed an ignition system with fuelled pre-chamber for automotive engines utilizing the available space for the conventional spark plug.
Technical Paper

Comparison of Shadowgraph Imaging, Laser-Doppler Anemometry and X-Ray Imaging for the Analysis of Near Nozzle Velocities of GDI Fuel Injectors

2017-10-08
2017-01-2302
The fuel spray behavior in the near nozzle region of a gasoline injector is challenging to predict due to existing pressure gradients and turbulences of the internal flow and in-nozzle cavitation. Therefore, statistical parameters for spray characterization through experiments must be considered. The characterization of spray velocity fields in the near-nozzle region is of particular importance as the velocity information is crucial in understanding the hydrodynamic processes which take place further downstream during fuel atomization and mixture formation. This knowledge is needed in order to optimize injector nozzles for future requirements. In this study, the results of three experimental approaches for determination of spray velocity in the near-nozzle region are presented. Two different injector nozzle types were measured through high-speed shadowgraph imaging, Laser Doppler Anemometry (LDA) and X-ray imaging.
Technical Paper

Self-Ignition Calculation of Diesel Spray

2012-04-16
2012-01-1262
This paper describes a computer simulation of Diesel spray formation and the locations of self-ignition nuclei. The spray is divided into small elementary volumes in which the amounts of fuel and fuel vapours, air, mean, maximum and minimum fuel droplet diameter are calculated, as well as their number. The total air-fuel and air-fuel vapour ratios are calculated for each elementary volume. The paper introduces a new criterion for determining self-ignition nuclei, based on assumptions that the strongest self-ignition probability lies in those elementary volumes containing the stoichiometric air ratio, where the fuel is evaporated or the fuel droplet diameter is equal to or lower than 0.0065 mm. The most efficient combustion in regard to consumption and emission will be in those elementary volumes containing stoichiometric air ratio, and fuel droplets with the lowest mean diameters. Measurements of injection and combustion were carried out in a transparent research engine.
Technical Paper

Characterization of Internal flow and Spray of Multihole DI Gasoline Spray using X-ray Imaging and CFD

2011-08-30
2011-01-1881
Multi-hole DI injectors are being adopted in the advanced downsized DISI ICE powertrain in the automotive industry worldwide because of their robustness and cost-performance. Although their injector design and spray resembles those of DI diesel injectors, there are many basic but distinct differences due to different injection pressure and fuel properties, the sac design, lower L/D aspect ratios in the nozzle hole, closer spray-to-spray angle and hense interactions. This paper used Phase-Contrast X ray techniques to visualize the spray near a 3-hole DI gasoline research model injector exit and compared to the visible light visualization and the internal flow predictions using with multi-dimensional multi-phase CFD simulations. The results show that strong interactions of the vortex strings, cavitation, and turbulence in and near the nozzles make the multi-phase turbulent flow very complicated and dominate the near nozzle breakup mechanisms quite unlike those of diesel injections.
Technical Paper

Influence of the fuel quantity on the spray formation and ignition under current engine relevant conditions

2011-08-30
2011-01-1928
Flexible and multiple injections are an important strategy to fulfill today's exhaust emission regulations. To optimize injection processes with an increasing number of adjustable parameters knowledge about the basic mechanisms of spray breakup, propagation, evaporation and ignition is mandatory. In the present investigation the focus is set on spray formation and ignition. In order to simulate current diesel-engine conditions measurements were carried out in a high-temperature (1000 K) and high-pressure (10 MPa) vessel with optical accesses. A piezo servo-hydraulic injector pressurized up to 200 MPa was used to compare four single injection durations and four multi-injection patterns in the ignition phase. All measurements were performed with CEC RF-03-06, a legislative reference fuel. For the spray measurements, a program of 16 to 18 different operating points was chosen to simulate engine conditions from cold start to full load.
Technical Paper

The Impact of a Combustion Chamber Optimization on the Mixture Formation and Combustion in a CNG-DI Engine in Stratified Operation

2017-03-28
2017-01-0779
A previous study by the authors has shown an efficiency benefit of up to Δηi = 10 % for stratified operation of a high pressure natural gas direct injection (DI) spark ignition (SI) engine compared to the homogeneous stoichiometric operation with port fuel injection (PFI). While best efficiencies appeared at extremely lean operation at λ = 3.2, minimum HC emissions were found at λ = 2. The increasing HC emissions and narrow ignition time frames in the extremely lean stratified operation have given the need for a detailed analysis. To further investigate the mixture formation and flame propagation und these conditions, an optically accessible single-cylinder engine was used. The mixture formation and the flame luminosity have been investigated in two perpendicular planes inside the combustion chamber.
Technical Paper

Quantitative DISI Spray Vapor Temperature Study for Different Biofuels by Two-Line Excitation Laser-Induced Fluorescence

2012-09-10
2012-01-1658
Biofuels and alternative fuels are increasingly being blended with conventional gasoline fuel to decrease overall CO₂ emissions. A promising way to achieve this is the use of DISI (direct-injection spark-ignition) technology. However, depending on temperature, pressure, chemical composition and the spark timing, unwanted pre-ignition may occur. Despite higher compression ratios, this engine knock can be decreased by lowering the mixing temperature. This results from the larger fuel evaporation enthalpy of certain biofuels which provides a non-homogeneous mixture throughout the combustion chamber. This work focuses on estimating the biofuel evaporation rate from absolute local vapor temperature and concentration. Measurements conducted in a high temperature/pressure cell using a multi-hole injector are carried out by applying planar, 2-line, laser-induced fluorescence and phase doppler interferometry.
Technical Paper

Soot Formation of Different Diesel-Fuels Investigated by Chemical Luminescence and Laser Induced Incandescence

2013-10-14
2013-01-2667
Differences in thermo-physical parameters of fuels have high impact on the ignition, combustion and emission. Pure rapeseed FAME and diesel fuel with a cetane number of 60 have been compared to reference fuel. In an optical accessible vessel the fuels have been injected in order to investigate the spray, the ignition and soot formation. The high cetane number fuel showed similar behavior in spray phase to the reference fuel but the FAME fuel is more present at all operating points due to low volatile fuel components. The ignition and combustion process was investigated via chemical luminescence (CL) and laser induced incandescence (LII). In engine investigations a reduced ignition delay is detected in case of high cetane-number. The more sensitive optical techniques show differences in the combustion process. The ignition behavior of the reference fuel and the increased cetane number fuel were similar until the cetane increaser of the high cetane fuel came into effect.
Technical Paper

Investigations on a New Engine Concept for Small Hydrogen Power Generation Units Using LOHCs

2013-10-14
2013-01-2525
New energy scenarios for decentralised stationary energy supply based on Liquid Organic Hydrogen Carriers (LOHC) offer an attractive application for hydrogen engines and are a reason why hydrogen engines become topical again. Since hydrogen stored in LOHCs is released under ambient pressure and temperatures of over 200°C, compression and cooling of the hydrogen is needed, lowering the system's overall efficiency. Direct injection of hydrogen is advantageous due to its low volumetric energy density and the tendency towards pre-ignition. The development objective is an injection and combustion strategy for an engine in the performance category below 15 kW and the described fuel supply scenario. Therefore, an one dimensional simulation model of the engine and the hydrogen supplying compressor was built. The simulation results show a large influence of the injection pressure on engine efficiency due to the hydrogen supplying compressor.
Technical Paper

Time and Spatially Resolved Measurements of the Interaction between Liquid and Combusting Diesel Spray and Walls in Modern Diesel Engine Conditions

2013-09-08
2013-24-0063
Spray- and flame-wall interactions were investigated in a combustion chamber with diesel engine conditions. Several techniques were used to perform time and spatially resolved measurements of the liquid fuel phase, the premixed and diffusion-controlled combustion close to a wall. Different wall and gas temperature variations were investigated. It was found that low temperature variations of 25K have a significant impact on the combustion process: The lower the gas temperatures, the more liquid fuel and larger vortex structures arise. Also, the ignition delay is elongated. Consequently, the premixing period is longer, which can lead to the complete disappearance of sooty combustion. The colder the wall, larger cooling of the spray and larger vortex structures of liquid fuel on the wall develop. The ignition delays again are noticeable longer at the colder wall. Therefore, the premixing period is longer and there is also much less sooty combustion when the wall temperature is lower.
X