Refine Your Search

Search Results

Author:
Viewing 1 to 8 of 8
Technical Paper

Concept Study of a 48V-Hybrid-Powertrain for L-Category Vehicles with Longitudinal Dynamic Simulation and Design of Experiments

2022-03-29
2022-01-0672
The demand for high efficiency powertrains in automotive engineering is further increasing, with hybrid powertrains being a feasible option to cope with new legislations. So far hybridization has only played a minor role for L-category vehicles. Focusing on an exemplary high-power L-category on-road vehicle, this research aims to show a new development approach, which combines longitudinal dynamic simulation (LDS) with “Design of Experiments” (DoE) in course of hybrid electric powertrain development. Furthermore, addressing the technological aspect, this paper points out how such a vehicle can benefit from 48V-hybridization of its already existing internal combustion powertrain. A fully parametric LDS model is built in Matlab/Simulink, with exchangeable powertrain components and an adaptable hybrid operation strategy. Beforehand, characterizing decisions as to focus on 48V and on parallel hybrid architecture are made.
Technical Paper

CFD Simulation Methodology for a Rotary Steam Expansion Piston Engine

2020-11-30
2020-32-2303
In industrial processes and other power generation processes, large amounts of waste heat are often lost to the environment. The conversion of this thermal energy into mechanical work promises a significant improvement in energy-utilization, the efficiency of the overall system and, consequently, cost-effectiveness. Therefore, the use of a Rankine-Cycle is a well-established technical process. A recent research project has investigated a novel expansion machine to be integrated into such an RC-process. Primarily, the present work deals with the fluid dynamic simulation of this expander, which is based on the principle of a rotary piston engine. The aim is to develop, analyze and optimize the process and the corresponding components. Hence, a CFD-model had to be built up, which should correspond as closely as possible to the physical engine.
Technical Paper

Simulation Analysis of the Scavenging Process of a Uniflow and Loop Scavenging Concept

2020-01-24
2019-32-0549
The two-stroke engine, as a today unconventional concept in automotive applications, has a great potential for a relaunch in the fast-growing market of Plugin Hybrid Electric Vehicle (PHEV) or Range Extender Electric Vehicle (REX) [2, 3, 4, 8, 9]. An efficient scavenging to remove the in-cylinder burnt gases and to fill the cylinder with fresh charge, performed at the same time is one of the major challenges, as losses of fresh air and fuel towards the exhaust line should be avoided when operating a lambda = 1 concept necessary for a 3-way catalyst aftertreatment system. A prior study [1] of different gas exchange designs for two-stroke engines concludes that two possible concepts cover this purpose. In this paper, 3D-CFD simulation is used to compare these two different scavenging concepts, a uniflow and a loop scavenging type with control elements for the gas exchange process.
Journal Article

Mass Balancing Measures of a Linkage-Based Extended Expansion Engine

2016-11-08
2016-32-0096
The enhancement of efficiency will play a more and more important role in the development of future (small) internal combustion engines. In recent years, the Atkinson (or Extended Expansion) cycle, realized over the crank drive, attracted increasing attention. Several OEMs have investigated this efficiency-increasing principle in the whole range from small engines up to automotive engines until now. In prior publications, the authors outlined the remarkable efficiency potentials of an Extended Expansion (EE) cycle. However, for an internal combustion engine, a smooth running performance as well as low vibrations and noise emissions are relevant aspects. This is especially true for an Extended Expansion engine realized over the crank drive. Therefore, design measures concerning friction and NVH need to be taken to enable possible series production status. Basically, these measures strongly depend on the reduction of the free mass forces and moments.
Technical Paper

Expansion to Higher Efficiency - Experimental Investigations of the Atkinson Cycle in Small Combustion Engines

2015-11-17
2015-32-0809
The enhancement of efficiency will play a more and more important role in the development of future (small) internal combustion engines. In recent years, the Atkinson cycle, realized over the crank drive, has attracted increasing attention. Several OEMs have been doing investigations on this efficiency-increasing principle with in the whole range from small engines up to automotive ones. In previous publications, the authors stated that an indicated efficiency of up to 48% could be reached with an Atkinson cycle-based engine. However, these studies are based on 1D-CFD simulation. To verify the promising simulation results, a prototype engine, based on the Atkinson principle, was designed and experimentally tested. The aim of the present study is to evaluate and validate the (indicated) engine efficiency gained by experimental tests compared to the predicted simulation results. In order to investigate part load behavior, several valve timing strategies were also developed and tested.
Technical Paper

Extended Expansion Engine with Mono-Shaft Cam Mechanism for Higher Efficiency - Layout Study and Numerical Investigations of a Twin Engine

2014-11-11
2014-32-0102
The automotive industry has made great efforts in reducing fuel consumption. The efficiency of modern spark ignition (SI) engines has been increased by improving the combustion process and reducing engine losses such as friction, gas exchange and wall heat losses. Nevertheless, further efficiency improvement is indispensable for the reduction of CO2 emissions and the smart usage of available energy. In the previous years the Atkinson Cycle, realized over the crank train and/or valve train, is attracting considerable interest of several OEMs due to the high theoretical efficiency potential. In this publication a crank train-based Atkinson cycle engine is investigated. The researched engine, a 4-stroke 2 cylinder V-engine, basically consists of a special crank train linkage system and a novel Mono-Shaft valve train concept.
Technical Paper

DESIGN AND DEVELOPMENT OF A 50CC SCOOTER FRAME SUPPORTED BY TESTING AND SIMULATION

2005-10-12
2005-32-0100
Modern small capacity motor scooters make high demands on a trendy vehicle design in combination with a customer friendly handling and multifarious storage space. In addition, increasing engine performance characteristics and high requirements on the vehicle weight call for the development of new vehicle frame concepts. Considering lightweight construction and strength durability, the new concepts are also due to fulfill the boundaries of a low cost production. The driving behavior of a scooter is directly influenced by the interaction of the suspension components, the mounting system of the drive unit and the stiffness of the frame. The present publication treats an assessment of different frame types in the 50cc scooter class by tests and simulation with the target to formulate key data regarding the solidness and stiffness characteristics. Based on these data collection a complete new frame concept has been designed and revised by calculation.
Technical Paper

Fuzzy Controller for Thermal Comfort in a Car Cabin

1997-02-24
970107
This paper presents two fuzzy logic based systems, developed by Valeo Thermal Systems and PSA Peugeot-Citroën, for controlling the thermal environment in a car cabin. This study aimed to simplify the control systems set up, while improving the cabin passengers comfort by taking into account the subjectivity of thermal sensation. The first system regulates the internal cabin temperature from a temperature fixed by the user on the climate control panel. The second system proposes a new “intelligent” control panel in order to ensure a better thermal balance for the car passengers. The two systems were installed and tuned on a Peugeot 605 vehicle, on which a standard automatic controller is already available. So, it was possible to compare the fuzzy and the classical series controllers on the same vehicle. The results show good regulation performances and demonstrate that the use of fuzzy logic reduces the development time.
X