Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

New Catalyst Preparation Procedure for OBDII-Monitoring Requirements

2001-03-05
2001-01-0933
In order to match catalyst OBDII conditions the common procedure is oven aging with air, which is not suitable for complete converter systems due to mantle corrosion. The goal was, therefore, to find an alternative procedure to ensure a defined catalyst aging that would match 1,75 times the emission standard and is also good for SULEV. The new procedure currently being developed allows the aging of metal and ceramic catalysts as well as complete catalyst systems. The paper will present the aging process, emission data of fresh and aged catalysts and the feedback to the test car OBDII system.
Technical Paper

Advanced Three-Way Converter System for High Temperature Exhaust Aftertreatment

1997-02-24
970265
An advanced three-way converter system with significant improvements in light-off performance, conversion efficiency, thermal stability and physical durability at high operating temperature is described. The converter system is comprised of a light-weight ceramic substrate with high surface area triangular cell structure, a new catalyst formulation with enhanced thermal stability and good substrate compatibility, and a durable packaging design which together lead to consistent improvements in high temperature performance and durability. Experimental data including FTP performance, canning trials, and high temperature vibration and thermal shock tests for both the advanced and standard three-way converter systems are presented.
Technical Paper

Reducing Cold-Start Emissions by Catalytic Converter Thermal Management

1995-02-01
950409
Vacuum insulation and phase-change thermal storage have been used to enhance the heat retention of a prototype catalytic converter. Storing heat in the converter between trips allows exhaust gases to be converted more quickly, significantly reducing cold-start emissions. Using a small metal hydride, the thermal conductance of the vacuum insulation can be varied continuously between 0.49 and 27 W/m2K (R-12 to R-0.2 insulation) to prevent overheating of the catalyst. A prototype was installed in a Dodge Neon with a 2.0-liter engine. Following a standard preconditioning and a 23-hour cold soak, an FTP (Federal Test Procedure) emissions test was performed. Although exhaust temperatures during the preconditioning were not hot enough to melt the phase-change material, the vacuum insulation performed well, resulting in a converter temperature of 146°C after the 23-hour cold soak at 27°C.
Technical Paper

Natural Gas Converter Performance and Durability

1993-03-01
930222
Natural gas-fueled vehicles impose unique requirements on exhaust aftertreatment systems. Methane conversion, which is very difficult for conventional automotive catalysts, may be required, depending on future regulatory directions. Three-way converter operating windows for simultaneous conversion of HC, CO, and NOx are considerably more narrow with gas engine exhaust. While several studies have demonstrated acceptable fresh converter performance, aged performance remains a concern. This paper presents the results of a durability study of eight catalytic converters specifically developed for natural gas engines. The converters were aged for 300 hours on a natural gas-fueled 7.0L Chevrolet engine operated at net stoichiometry. Catalyst performance was evaluated using both air/fuel traverse engine tests and FTP vehicle tests. Durability cycle severity and a comparison of results for engine and vehicle tests are discussed.
Technical Paper

Thermal Shock Resistance of Oval Monolithic Heavy Duty Truck Converters

1988-02-01
880101
The long term durability of a heavy duty gasoline truck converter is addressed by examining thermal stresses due to radial temperature gradients under three different driving schedules. The pertinent physical properties of a catalyzed cordierite ceramic converter, with triangular cell structure, are first measured as function of temperature. These are followed by thermal mapping of mid-bed temperatures with the aid of thermocouples under various driving cycles on the truck dynamometer. Both the physical properties and the temperature distribution are then used as input parameters in the finite element thermal stress model to compute stresses in the oval converter.
X