Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Quasi-Dimensional Modelling of Combustion in a Two-Stroke Cycle Spark Ignition Engine

1994-09-01
941680
This paper details a theoretical and experimental study of combustion phenomena within a two-stroke cycle, spark ignition engine. The theoretical part of the work involved the development of an improved quasi-dimensional combustion model. This model was incorporated into a computer program which was used to predict the thermodynamic and chemical changes occurring within a two-stroke engine during the closed cycle of the engine. The simulation uses a turbulent kinetic energy model to predict flame front velocity. Combustion chamber geometry is used to estimate entrained mass and mass fraction burned is calculated from a simple eddy-entrainment approach. The experimental work was undertaken to validate the combustion model. Two separate cylinder heads were designed with different combustion chambers and tested on a standard loop-scavenged engine over a range of operating conditions.
Technical Paper

A Closed Cycle Simulation Model with Particular Reference to Two-Stroke Cycle Engines

1991-09-01
911847
A quasi-dimensional computer simulation model is presented to simulate the thermodynamic and chemical processes occurring within a spark ignition engine during compression, combustion and expansion based upon the laws of thermodynamics and the theory of equilibrium. A two-zone combustion model, with a spherically expanding flame front originating from the spark location, is applied. The flame speed is calculated by the application of a turbulent entrainment propagation model. A simplified theory for the prediction of in-cylinder charge motion is proposed which calculates the mean turbulence intensity and scale at any time during the closed cycle. It is then used to describe both heat transfer and turbulent flame propagation. The model has been designed specifically for the two-stroke cycle engine and facilitates seven of the most common combustion chamber geometries. The fundamental theory is nevertheless applicable to any four-stroke cycle engine.
X