Refine Your Search

Search Results

Viewing 1 to 8 of 8
Journal Article

Effects of Sequential Turn Signals under Realistic Visual Conditions

2023-04-11
2023-01-0915
Sequential turn signals are becoming more common, partly because of the availability of the detailed temporal and spatial control of light that is allowed by LED sources. They seem to be popular with drivers, and some human factors considerations suggest that they may more effectively convey information about intended maneuvers. This research was designed to investigate possible benefits by presenting experimental participants with a variety of sequential and static turn signals under realistic field conditions. The experimental tasks were based on possible encounters at four-way intersections. Passenger cars were statically positioned to represent such encounters. Participants were seated in one of the vehicles and were asked to make simple but meaningful judgments about intended turns by the other vehicles. Visual conditions were realistic in terms of the viewing geometry and photometry. Experiments were conducted in the day and at night. Three experiments were performed.
Technical Paper

Hazard Cuing Systems for Teen Drivers: A Test-Track Evaluation on Mcity

2019-04-02
2019-01-0399
There is a strong evidence that the overrepresentation of teen drivers in motor vehicle crashes is mainly due to their poor hazard perception skills, i.e., they are unskilled at appropriately detecting and responding to roadway hazards. This study evaluates two cuing systems designed to help teens better understand their driving environment. Both systems use directional color-coding to represent different levels of proximity between one’s vehicle and outside agents. The first system provides an overview of the location of adjacent objects in a head-up display in front of the driver and relies on drivers’ focal vision (focal cuing system). The second system presents similar information, but in the drivers’ peripheral vision, by using ambient lights (peripheral cuing system). Both systems were retrofitted into a test vehicle (2014 Toyota Camry). A within-subject experiment was conducted at the University of Michigan Mcity test-track facility.
Journal Article

Subjective and Objective Effects of Driving with LED Headlamps

2014-04-01
2014-01-1985
This study was designed to investigate how the spectral power distribution (SPD) of LED headlamps (including correlated color temperature, CCT) affects both objective driving performance and subjective responses of drivers. The results of this study are not intended to be the only considerations used in choosing SPD, but rather to be used along with results on how SPD affects other considerations, including visibility and glare. Twenty-five subjects each drove 5 different headlamps on each of 5 experimental vehicles. Subjects included both males and females, in older (64 to 85) and younger (20 to 32) groups. The 5 headlamps included current tungsten-halogen (TH) and high-intensity discharge (HID) lamps, along with three experimental LED lamps, with CCTs of approximately 4500, 5500, and 6500 K. Driving was done at night on public roads, over a 21.5-km route that was selected to include a variety of road types.
Technical Paper

Visual Aiming of European and U.S. Low-Beam Headlamps

1992-02-01
920814
This study evaluated the effect of the sharpness of the cutoff (the transition between the lighter and darker portions of the beam) of low-beam headlamps on visual vertical aiming. Out of ten lamps tested, seven had a U.S.-type beam pattern and three had a European-type beam pattern. Twenty younger and middle-aged subjects of both sexes, along with an experienced lamp aimer, were asked to adjust the vertical aim of the lamps in such a way that the cutoff of the beam was coincident with a horizontal line on a vertical surface. The subjects were instructed to make the alignment using the illumination gradient to the right of vertical for the U.S.-type lamps and to the left of vertical for the European-type lamps. Each person aimed each lamp ten times. There are two main results. First, the location of the perceived cutoff was generally near the location of the maximum contrast between adjacent vertical parts of the beam pattern.
Technical Paper

Reaction Times to High-Contrast Brake Lamps

1991-02-01
910821
High-contrast brake lamps are lamps that appear black or body color when they are not energized. In addition to stylistic advantages, there may be some behavioral benefits from using high-contrast brake lamps, such as a reduction in driver reaction times to brake signals during high levels of ambient illumination. There are two possible mechanisms for such an effect. The first mechanism is based on the increased brightness difference between the off and on states. The second mechanism involves the increased color difference between the two states. While the standard brake lamp goes from darker red to brighter red, the high-contrast lamp appears to change from black or body color to red. The present study was designed to evaluate the potential reaction-time benefits of high-contrast brake lamps. The study, performed in a laboratory, simulated a daytime driving condition with illumination from the sun being reflected by the lenses of the brake lamps.
Technical Paper

Rearward Vision, Driver Confidence, and Discomfort Glare Using an Electrochromic Rearview Mirror

1991-02-01
910822
Electrochromic rearview mirrors can provide continuous levels of reflectivity and unobtrusive, automatic control. The availability of this technology has increased the importance of understanding how to select the best level of reflectivity for a given set of lighting conditions. For night driving with glare from following headlights, the best reflectivity level will always depend on a tradeoff among several variables. This study was designed to help clarify what variables are important and how they should be quantified. Twenty subjects, 10 younger and 10 older, performed a number of visual tasks while viewing stimuli through an electrochromic rearview mirror. Subjects were seated in an automobile mockup in a laboratory, and the reflectivity level of the mirror was changed before each of a series of discrete trials. On each trial, subjects saw reflected in the mirror a visual-acuity stimulus and a glare source of varying intensity.
Technical Paper

Nighttime Effectiveness of Rearview Mirrors: Driver Attitudes and Behaviors

1990-02-01
900567
The availability of new technology for antiglare rearview mirrors has increased the importance of understanding how people react to glare from rearview mirrors and what the tradeoff between visibility and glare reduction should be. We conducted a survey of attitudes toward and use of prism mirrors to determine what guidance that information might offer for future mirror design. The major findings are that (1) there is a high level of awareness and use of prism mirrors, but (2) the benefits obtainable from the antiglare setting of the prism mirror are not fully utilized. The reasons for this suboptimal use appear to be (1) a lower than desirable level of reflectivity on the antiglare setting, and (2) failure to make the required manual adjustments of the mirror.
Technical Paper

An Improved Braking Indicator

1989-02-01
890189
Conventional brake lights require 250 msec to reach 90% intensity, thereby causing potentially important delays of warning information to following drivers. Several improvements are possible, including the use of LED displays. LED's, however, are more expensive than conventional incandescent bulbs and require redesign of lamp housings. As an alternative, we have designed a simple and relatively inexpensive circuit that produces a faster warning signal using a conventional bulb. We have evaluated the benefits of this device in a laboratory study that measured subjects' reaction times to the onset of brake lights in a simulated car-following situation. Our data indicate that the benefit of the device is on the order of 115 msec. For a vehicle traveling at 65 miles per hour, that benefit translates to a decrease in stopping distance of 11 feet.
X