Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Dynamics of Water Crossover in Fuel Cell and Application to Freeze Driveaway Reliability

2020-04-14
2020-01-0853
Reliable driveaway from frozen condition is one of the challenging design and control problem for fuel cell applications. Different approaches for warmup from frozen conditions have been developed by OEMs, e.g. low voltage inefficient operation, or use of coolant heaters. However, most methods result in water generation which risk icing and blocking the valves and rendering them nonfunctional till they thaw. One such valve is the anode drain valve which is needed to remove water that crosses over across the membrane to anode side. This work discusses characterization of dynamics of water crossover to anode balance of plant via step response experiments on full scale systems, and development of an online estimator to detect onset of anode water crossover via this online observer. In addition, detection via voltage dip-based feedback is also presented.
Technical Paper

HVAC System Design and Optimization Utilizing Computational Fluid Dynamics

1997-05-19
971853
Computational Fluid Dynamics (CFD) analysis has been used extensively in the design of automotive HVAC systems with the objective of optimize system performance and shorten the product development time. In this paper, the three dimensional Navier-Stokes code STAR-CD was used to determine the overall system pressure drop and velocity field, as well as, individual component pressure and velocity field. In addition, a better insight into the flow characteristics of the HVAC system has been obtained through the CFD analysis. Thermal performance of the HVAC module can also be achieved through the use of user supplied subroutines, which model the thermal effects of heat exchangers. In this paper, two specific systems were analyzed. The first system consisted of a simplified plentum, multiple inlet designs, blower, and evaporator core. The main focus of this analysis was placed on inlet design.
X