Refine Your Search

Search Results

Author:
Viewing 1 to 3 of 3
Technical Paper

Reduction of N2O from Automobiles Equipped with Three-Way Catalyst - Analysis of N2O Increase Due to Catalyst Deactivation -

1999-03-01
1999-01-1081
To derive an effective technique for reducing a greenhouse gas nitrous oxide (N2O) emitted from automobiles, we prepared experimental three-way catalysts carrying various types and quantities of precious metals, and investigated their N2O generation and conversion characteristics. In view of previous reports on increased N2O emissions from in-use automobiles, we deactivated the catalysts in a rapid aging test, and observed the effect of catalyst deactivation on N2O generation and conversion by the catalysts. We found that the concentrations of generated N2O decreased as the quantities of precious metals carried by catalysts were decreased and that, accordingly, these low-carrying catalysts are more advantageous from the standpoint of reducing N2O generation. However, the concentrations of generated N2O increased as the catalysts were deactivated.
Technical Paper

Exhaust Purification of Diesel Engines by Homogeneous Charge with Compression Ignition Part 1: Experimental Investigation of Combustion and Exhaust Emission Behavior Under Pre-Mixed Homogeneous Charge Compression Ignition Method

1997-02-24
970313
A homogeneous Charge Compression Ignition Diesel Combustion (HCDC) system has been experimentally studied for it's effect on exhaust purification of diesel engines. In this system, most fuel is injected into the intake manifold to form homogeneous pre-mixture in the combustion chamber beforehand and the pre-mixture is ignited with a small amount of fuel directly injected into the cylinder by a conventional injection system. Because this system performs homogeneous lean-burn, it can realize low emission which cannot be realized by conventional diesel engines without impairing ignition controllability in the operations ranging from idle to full load. In particular, although the operating regions were strictly limited, extremely low Nox emission levels of as low as 10 to 40 ppm were realized with maintaining low smoke emissions, when the ratio of pre-mixed fuel was increased up to approx. 98%.
Technical Paper

Exhaust Purification of Diesel Engines by Homogeneous Charge with Compression Ignition Part 2: Analysis of Combustion Phenomena and NOx Formation by Numerical Simulation with Experiment

1997-02-24
970315
An experimental and a numerical analysis wereconducted based on the concept of homogeneous charge diesel combustion (HCDC), in which most of the fuel is supplied for pre-mixed homogeneous charge which is compressed in the cylinder and then ignited by small amount of diesel fuel directly injected into a cylinder. At the previous report, It was indicated that simultaneous improvement of NOx and smoke were possible. Especially under a certain condition, NOx was extremely reduced. This report describes the preliminary analysis for the cause of this emission improvement with HCDC method. As result, direct optical observation of the combustion phenomena and numerical analysis using KIVA2 code suggested that low NOx combustion may be caused by lowered combustion temperature and reduced combustion period due to the uniform lean combustion.
X