Refine Your Search

Topic

Search Results

Author:
Technical Paper

Simulation Study of Cathode Spot Formation on Spark Plug Electrodes Leading to Electrode Erosion

2024-04-09
2024-01-2103
A multi-dimensional cathode spot generation model is proposed to study the interaction between the plasma arc and cathode surface of a spark plug during the ignition process. The model is focused on the instationary (high current) arc phase immediately following breakdown, and includes detailed physics for the phenomena during spot formation such as ion collision, thermal-field emission, and metal vaporization, to simulate the surface heat source, current density and surface pressure. The spot formation for a platinum cathode is simulated using the VOF (volume of fluid) model within FLUENT, where the local metal is melted and deformed by pressure differences on the surface. A random walk model has been integrated to consider the movement of the arc center, resulting in the formation of different types of spots.
Technical Paper

Effects of Spark Plug Operating Conditions on Electrode Erosion and Surface Deformation

2024-04-09
2024-01-2100
An experimental study of the spark ignition process for SI engines was conducted to study spark plug erosion and the effect of breakdown voltage/energy on electrode surface deformation. The experiments were conducted outside of an engine, in both a pressurized constant volume optical chamber and in a high-pressure vessel heated within a furnace with gas temperatures as high as 730°C. J-gap spark plugs designed for natural gas engines were studied at elevated temperature and under a range of pressures to investigate electrode wear characteristics. Both iridium-alloy and platinum-alloy cathode (center electrode) and anode (ground strap) spark plugs were investigated. In addition, single spark events were performed on polished platinum cathode surfaces to allow the visualization of craters from individual spark events in order to quantify how their size and shape were affected by energy deposition and breakdown characteristics.
Technical Paper

Multi-Dimensional Spark Ignition Model for Arc Propagation and Thermal Energy Deposition with Crossflow

2023-04-11
2023-01-0205
A multi-dimensional model of the spark ignition process for SI engines was developed as a user defined function (UDF) integrated into the commercial engine simulation software CONVERGE CFD. The model simulates spark plasma movement in an inert flow environment without combustion. The UT model results were compared with experiments for arc movement in a crossflow and also compared with calorimeter measurements of thermal energy deposition under quiescent conditions. The arc motion simulation is based on a mean-free-path physical model to predict the arc movement given the contours of the crossflow velocity through the gap and the interaction of the spatially resolved electric field with the electrons making up the arc. A further development is the inclusion of a model for the thermal energy deposition of the arc as it is stretched by the interaction of the flow and the electric field.
Technical Paper

Spark Discharge Characteristics for Varying Spark Plug Geometries and Gas Compositions

2022-03-29
2022-01-0437
Spark discharge properties were studied and characterized for varying gas compositions and spark plug geometries using a spark calorimeter and constant volume optical vessel. Two different 18 mm natural gas engine spark plugs were used in the experiments. All measurements were recorded under quiescent conditions and with a spark gap of 0.30 mm. The spark plug calorimeter was used for measuring thermal energy deposition to the gas for gas compositions of nitrogen, a stoichiometric mixture of nitrogen and methane, a stoichiometric mixture of nitrogen and methane diluted with 30% carbon dioxide by volume, and for air. Other measurements of interest included breakdown voltage, electrical energy delivered to the spark gap, electrical-to-thermal energy conversion efficiency, and spark duration, for pressures up to 28 bar at 300 K. The optical vessel was used for the combusting mixture of stoichiometric air and methane at pressures up to 28 bar.
Journal Article

A Simulation Study on the Transient Behavior of a Gasoline Direct Injection Engine under Cold Start Conditions

2022-03-29
2022-01-0401
The cold start process is critical to control the emissions in a gasoline direct injection (GDI) engine. However, the optimization is very challenging due to the transient behavior of the engine cold start. A series of engine simulations using CONVERGE CFD™ were carried out to show the detailed process in the very first firing event of a cold start. The engine operating parameters used in the simulations, such as the transient engine speed and the fuel rail pressure (FRP), came from companion experiments. The cylinder pressure traces from the simulations were compared with experiments to help validate the simulation model. The effects of variation of the transient parameters on in-cylinder mixture distribution and combustion are presented, including the effects of the rapidly changing engine speed, the slowly vaporized fuel due to the cold walls, and the low FRP during the first firing cycle of a 4-cylinder engine. Comparison was also made with non-transient steady state operation.
Technical Paper

Spark Ignition Discharge Characteristics under Quiescent Conditions and with Convective Flows

2021-09-21
2021-01-1157
The arc characteristics and discharge behavior of a representative inductive spark ignition system were characterized with a spark plug calorimeter and a constant volume vessel used to create high-pressure crossflow velocities through the gap of the spark plug. A 14 mm diameter natural gas engine spark plug was used for the measurements. The discharges were into a non-combusting gas, primarily nitrogen. The spark plug calorimeter was used to determine the electrical-to-thermal energy conversion in the spark gap under quiescent conditions, while the constant volume vessel was used to study ignition arc structure in convective crossflows and imaged with a high-speed camera. Topics included the effect of crossflow velocity, pressure (up to 20 bar at 300 K), and gap distance on breakdown voltage, arc duration and delivered electrical energy. Also of interest was the amount of remaining electrical energy on the coil versus spark duration in a cross flow.
Technical Paper

Multi-Dimensional Spark Ignition Model with Distributed Energy Input and Integrated Circuit Model

2021-04-06
2021-01-0405
A multi-dimensional model of the spark ignition process for SI engines was developed as a user defined function (UDF) integrated into the commercial engine simulation software CONVERGE™ CFD. For the present research, the model simulated spark plasma development in an inert flow environment without combustion. The UT model results were then compared with experiments. The UT CONVERGE CFD-based model includes an electrical circuit sub-model that couples the primary and secondary sides of an inductive ignition system to predict arc voltage and current, from which the transient delivered electrical energy to the gap can be determined. Experimentally measured values of the arc resistance and spark plug calorimeter measurements of the efficiency of electrical to thermal energy conversion in the gap were used to determine the thermal energy delivered to the gas in the spark gap for different pressures and gap distances.
Technical Paper

Testing the Rotating Liner Engine: Over 30% Reduction in Diesel Engine Fuel Consumption at Idle Conditions

2021-04-06
2021-01-0448
The Rotating Liner Engine (RLE) is a design concept for internal combustion engines, where the cylinder liner rotates at a surface speed of 2-4 m/s in order to assist piston ring lubrication. The metal-to-metal contact/boundary friction that exists close to the piston reversal area becomes a significant source of energy loss when the gas pressure that loads the piston rings and skirts is high. Reduction in mechanical friction has a direct impact on brake thermal efficiency. This paper describes fuel consumption measurements of our prototype single cylinder engine, compared to a baseline at idle. The reduction in fuel flow is of the order of 40% when extrapolated to a complete engine. The margin in friction reduction is expected to grow at increasing load, but reduce at increasing speeds. Our earlier models estimated idle fuel consumption reduction to about 25%, at full load about 3.5%, for a Heavy-Duty FTP 6.8 %, and may have been conservative.
Technical Paper

Experimental and Modeling Study of Spark Plug Electrode Heat Transfer and Thermal Energy Deposition

2021-04-06
2021-01-0480
Spark plug electrode heat transfer and its relationship with the thermal energy deposition from the spark plasma to the gas in the spark gap was studied under quiescent non-combusting conditions. The thermal energy deposition to the gas (N2) was measured with a spark plug calorimeter as a function of pressure, up to 30 bar. The measurements were carried out for two gap distances of 0.3 mm and 0.9 mm, for three nominally identical spark plugs having different electrode surface area and/or surface thermal conductivity. The unmodified baseline spark plug had a nickel center electrode (cathode) 2.0 mm in diameter, the first modified spark plug had both the ground and center electrodes shaved to a diameter of approximately 0.5 mm, and the second modified spark plug had copper inserts bonded to both electrodes. The experimental results were compared with multi-dimensional simulations of the conjugate heat transfer to the gas and to the metal electrodes, conducted using CONVERGE CFD.
Journal Article

Quantitative Analysis of Gasoline Direct Injection Engine Emissions for the First 5 Firing Cycles of Cold Start

2021-04-06
2021-01-0536
A series of cold start experiments using a 2.0 liter gasoline turbocharged direct injection (GTDI) engine with custom controls and calibration were carried out using gasoline and iso-pentane fuels, to obtain the cold start emissions profiles for the first 5 firing cycles at an ambient temperature of 22°C. The exhaust gases, both emitted during the cold start firing and emitted during the cranking process right after the firing, were captured, and unburned hydrocarbon emissions (HC), CO, and CO2 on a cycle-by-cycle basis during an engine cold start were analyzed and quantified. The HCs emitted during gasoline-fueled cold starts was found to reduce significantly as the engine cycle increased, while CO and CO2 emissions were found to stay consistent for each cycle. Crankcase ventilation into the intake manifold through the positive-crankcase ventilation (PCV) valve system was found to have little effect on the emissions results.
Technical Paper

Effects of Injection Pressure, Intake Throttling, and Cylinder Deactivation on Fuel Consumption and Emissions for a Light Duty Diesel Engine at Idle Conditions

2020-04-14
2020-01-0303
The continuing growth of urban population centers has led to increased traffic congestion for which vehicles can spend considerable periods at low speed/low load and idle conditions. For light-duty diesel vehicles, these low load conditions are characterized by low engine exhaust temperatures (~100oC). Exhaust temperatures can be too low to maintain the activity of the catalytic exhaust aftertreatment devices (usually need >~200oC) which can lead to high emissions that contribute to deteriorating urban air quality. This study is a follow-on to two previous studies on the effects of throttling, post-injection, and cylinder deactivation (CDA) on light-duty diesel engine exhaust temperatures and emissions. The focus of the present study is on fuel consumption, exhaust temperatures, and emissions with and without cylinder deactivation or with fuel cutout, and the sensitivity to or effects of fuel rail pressure, along with observations of apparent idle engine friction.
Journal Article

A Novel Technique for Measuring Cycle-Resolved Cold Start Emissions Applied to a Gasoline Turbocharged Direct Injection Engine

2020-04-14
2020-01-0312
There is keen interest in understanding the origins of engine-out unburned hydrocarbons emitted during SI engine cold start. This is especially true for the first few firing cycles, which can contribute disproportionately to the total emissions measured over standard drive cycles such as the US Federal Test Procedure (FTP). This study reports on the development of a novel methodology for capturing and quantifying unburned hydrocarbon emissions (HC), CO, and CO2 on a cycle-by-cycle basis during an engine cold start. The method was demonstrated by applying it to a 4 cylinder 2 liter GTDI (Gasoline Turbocharged Direct Injection) engine for cold start conditions at an ambient temperature of 22°C. For this technique, the entirety of the engine exhaust gas was captured for a predetermined number of firing cycles.
Technical Paper

The Rotating Liner Engine (RLE) Diesel Prototype: Preliminary Testing

2019-01-15
2019-01-0084
The Rotating Liner Engine (RLE) concept is a design concept for internal combustion engines, where the cylinder liner rotates at a surface speed of 2-4 m/s in order to assist piston ring lubrication. Specifically, we have evidence from prior art and from our own research that the above rotation has the potential of eliminating the metal-to-metal contact/boundary friction that exists close to the piston reversal areas. This frictional source becomes a significant energy loss, especially in the compression/expansion part of the cycle, when the gas pressure that loads the piston rings and skirts is high. This paper describes the Diesel RLE prototype constructed from a Cummins 4BT and the preliminary observations from initial low load testing. The critical technical challenge, namely the rotating liner face seal, appears to be operating with negligible gas leakage and within the hydrodynamic lubrication regime for the loads tested (peak cylinder pressures of the order of 80 bar).
Technical Paper

Comparison of an On-Board, Real-Time Electronic PM Sensor with Laboratory Instruments Using a 2009 Heavy-Duty Diesel Vehicle

2011-04-12
2011-01-0627
EmiSense Technologies, LLC (www.emisense.com) is commercializing its electronic particulate matter (PM) sensor that is based on technology developed at the University of Texas at Austin (UT). To demonstrate the capability of this sensor for real-time PM measurements and on board diagnostics (OBD) for failure detection of diesel particle filters (DPF), independent measurements were performed to characterize the engine PM emissions and to compare with the PM sensor response. Computational fluid dynamics (CFD) modeling was performed to characterize the hydrodynamics of the sensor's housing and to develop an improved PM sensor housing with reproducible hydrodynamics and an internal baffle to minimize orientation effects. PM sensors with the improved housing were evaluated in the truck exhaust of a heavy duty (HD) diesel engine tested on-road and on a chassis dynamometer at the University of California, Riverside (UCR) using their Mobile Emissions Laboratory (MEL).
Technical Paper

A New Sensor for On-Board Detection of Particulate Carbon Mass Emissions from Engines

2004-10-25
2004-01-2906
A new electronic sensor has been developed to measure the time-resolved concentration of carbonaceous particulate matter (PM) emitted in engine exhaust. One application of the sensor could be to provide cycle-resolved feedback on the carbonaceous PM concentration in the exhaust to the engine control unit (ECU), thereby enabling real-time control of engine operating parameters to lower PM emissions. Another promising application is to monitor the performance of particulate traps. The sensor was tested in exhaust flows from a single cylinder diesel engine and from a steady-state acetylene diffusion flame in a flow tunnel. Steady-state engine measurements were made at constant speed and variable load, and transient measurements were performed during engine start-up and accelerations. The sensor response was compared with an opacity meter and with gravimetric filter measurements.
Technical Paper

Effects of In-cylinder Flow on Fuel Concentration at the Spark Plug, Engine Performance and Emissions in a DISI Engine

2002-03-04
2002-01-0831
A fiber optic instrumented spark plug was used to make time-resolved measurements of the fuel vapor concentration history near the spark gap in a four-valve DISI engine. Four different bulk flow were investigated. Several early and late injection timings were examined. The fuel concentration at the spark gap was correlated with IMEP. Emissions of CO, HCs, and NOx were related to the type of bulk flow. For both early and late injection the CoVs of fuel concentration were generally lowest for the weakest bulk flow which resulted in a stable stratification. Strong bulk flows convected the inhomogeneities through the measurement area near the spark plug resulting in both large intracycle and cycle-to-cycle variation in equivalence ratio at the time of ignition.
Technical Paper

Effects of Piston Wetting on Size and Mass of Particulate Matter Emissions in a DISI Engine

2002-03-04
2002-01-1140
We have examined the influence of piston wetting on the size distribution and mass of particulate matter (PM) emissions in a SI engine using several different fuels. Piston wetting was isolated as a source of PM emissions by injecting known amounts of liquid fuel onto the piston top using an injector probe. The engine was run predominantly on propane with approximately 10% of the fuel injected as liquid onto the piston. The liquid fuels were chosen to examine the effects of fuel volatility and molecular structure on the PM emissions. A nephelometer was used to characterize the PM emissions. Mass measurements from the nephelometer were compared with gravimetric filter measurements, and particulate size measurements were compared with scanning electron microscope (SEM) photos of particulates captured on filters. The engine was run at 1500 rpm at the Ford world-wide mapping point with an overall equivalence ratio of 0.9.
Technical Paper

Particulate Characterization of a DISI Research Engine using a Nephelometer and In-Cylinder Visualization

2001-05-07
2001-01-1976
A nephelometer system was developed to characterize engine particulate emissions from DISI engines. Results were correlated with images showing the location and history of particulates in the cylinder of an optical engine. The nephelometer's operation is based upon the dependence of scattered laser light on particulate size from a flow sampled from the exhaust of an engine. The nephelometer simultaneously measured the scattered light from angles of 20° to 160° from the forward scattering direction in 4° increments. The angular scattering measurements were then compared with calculations using a Mie scattering code to infer information regarding particulate size. Measurements of particulate mass were made based upon a correlation developed between the scattered light intensity and particulate mass samples trapped in a 0.2-micron filter. Measurements were made in a direct injection single-cylinder spark ignition research engine having a transparent quartz cylinder.
Technical Paper

Liquid Film Evaporation Off the Piston of a Direct Injection Gasoline Engine

2001-03-05
2001-01-1204
An optical access engine was used to image the liquid film evaporation off the piston of a simulated direct injected gasoline engine. A directional injector probe was used to inject liquid fuel (gasoline, i-octane and n-pentane) directly onto the piston of an engine primarily fueled on propane. The engine was run at idle conditions (750 RPM and closed throttle) and at the Ford World Wide Mapping Point (1500 RPM and 262 kPa BMEP). Mie scattering images show the liquid exiting the injector probe as a stream and directly impacting the piston top. Schlieren imaging was used to show the fuel vaporizing off the piston top late in the expansion stroke and during the exhaust stroke. Previous emissions tests showed that the presence of liquid fuel on in-cylinder surfaces increases engine-out hydrocarbon emissions.
Technical Paper

The Effects of In-Cylinder Flow Fields and Injection Timing on Time-Resolved Hydrocarbon Emissions in a 4-Valve, DISI Engine

2000-06-19
2000-01-1905
Direct injection spark-ignition (DISI) engines have been shown to have much higher engine-out hydrocarbon emissions (HC) than port fuel injected (PFI) engines. A major contribution to the increase in HC emissions is from the in-cylinder surface wetting that occurs as the fuel is injected. A previous study using an optical access engine and a fuel concentration probe demonstrated that the in-cylinder flow field and injection timing have a significant effect on the equivalence ratio at the spark plug. This study continues that work, by using a fast spectroscopic HC emission measurement device (Fast-Spec) to study time-resolved HC emissions from a 4-valve, centrally injected, single cylinder DISI engine. Three flow fields are studied: tumble, reverse tumble and stock. The tumble and reverse tumble flow fields are achieved using shrouded valves. Both early and late start of injection (SOI) timings are investigated.
X