Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Modeling and Identification of an Electric Vehicle Braking System: Thermal and Tribology Phenomena Assessment

2020-04-14
2020-01-1094
A rapidly shifting market and increasingly stringent environmental regulations require the automotive industry to produce more efficient low-emission Electric Vehicles (EVs). Regenerative braking has proven to be a major contributor to both objectives, enabling the charging of the batteries during braking and a reduction of the load and wear of the brake pads. The optimal sizing of such systems requires the availability of good simulation models to improve their performance and reliability at all stages of the vehicle design. This enables the designer to study both the integration of the braking system with the full vehicle equipment and the interactions between electrical and mechanical braking strategies. This paper presents a generic simulation framework for the identification of thermal and wear behaviour of a mechanical braking system, based on a lumped parameter approach.
Technical Paper

Virtual Car Sound Synthesis Technique for Brand Sound Design of Hybrid and Electric Vehicles

2012-11-25
2012-36-0614
One of the practical consequences of the development of low CO₂ emission cars is that many of the traditional NVH sound engineering processes no longer apply and must be revisited. Different and new sound sources, new constraints on vehicle body design (e.g., due to weight) and new sound perception characteristics make that the NVH knowledge built on generations of internal combustion-powered vehicles cannot be simply transferred to Hybrid and Electric Vehicles (HEV). Hence, the applicability of tools must be reviewed and extensions need to be developed where necessary. This paper focuses on sound synthesis tools as developed for ICE-powered vehicles. Because of the missing masking effect and the missing intake and exhaust noise of the Internal Combustion Engine (ICE) in electric vehicles, on one hand electric vehicles are quieter than traditional vehicles.
X