Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Precise Measurement of Heat Transfer to the Inlet Air using Intake Port Model

2005-04-11
2005-01-0999
Temperature measurement experiments with intake port model were done to achieve the fundamental information on constructing physical model that expresses the heat transfer phenomena in the intake manifold and intake port. The experiments were done with steady airflow, and the size, shape, heating condition of the port model and mass flow rate were changed as experimental parameters. As the results, it was clear that the developing condition of velocity and thermal boundary layer had greater influence than the shape factor, and the coefficient and the exponent of the equation derived from the relationship between Nusselt number and Reynolds number had great difference from those of generally used Colburn's equation in undeveloped entrance region, but they got closer as developing boundary layer.
Technical Paper

Measurement of Temperature Distribution Nearby Flame Quenching Zone by Real-Time Holographic Interferometry

2004-03-08
2004-01-1761
Temperature distribution as the flame propagated and contacted to the wall of the combustion chamber was measured by real-time holographic interference method, which mainly consisted of an argon-ion laser and a high-speed video camera. The experiment was done with a constant volume chamber and propane-air mixture with several kinds of equivalence ratios. From the experimental results, it can be found that the temperature distribution outside the zone from the surface of the combustion chamber to 0.1mm distance could be measured by counting the number of the interference fringes, but couldn't within this zone because of lacking in the resolution of the used optical system. The experimental results show that the temperature distribution when the heat flux on the wall increases rapidly and when the heat flux shows the maximum value are quite different by the equivalence ratio.
Technical Paper

Study on Electronic control of Air -Fuel Ratio and Ignition Timing for Small Gasoline Engine

2001-12-01
2001-01-1861
The electronic controlled carburetor and ignition system has been developed. In accordance with various working conditions of the engine, the system adjusted corresponding control parameters; air fuel ratio and ignition timing, therefore it could keep the engine working on the optimal conditions. Through analyzing overall performance of the engine based on the experimental data, we had concluded that the specific fuel consumption was improved about 8-10%, and the exhaust emission performance was improved correspondingly after electronic control, the improved ratio was about 10% for HC emission and 97% for CO emission.
Technical Paper

Research on Adaptation of Pressure Wave Supercharger (PWS) to Gasoline Engine

2001-03-05
2001-01-0368
The purpose of this study is to find the suitable working conditions of a Pressure Wave Supercharger (PWS) that is coupled to a gasoline engine experimentally. The working condition is validated by stationary measurements on an engine dynamometer. To achieve an easier system structure, it was examined to use the engine output for driving of PWS. As a result, it was confirmed that the engine coupled with PWS could be driven by making the ratio of the PWS rotor speed and the engine speed constant.
Technical Paper

Heat Transfer in the Internal Combustion Engines

2000-03-06
2000-01-0300
This investigation was concerned with the rate of heat transfer from the working gases to the combustion chamber walls of the internal combustion engines. The numerical formula for estimating the heat transfer to the combustion chamber wall was derived from the theoretical analysis and the experiment, which were used the constant volume combustion chamber and the actual gasoline engine. As a result, mean heat transfer in the internal combustion engine becomes possible to estimate with measuring the cylinder pressure. In addition, the derived numerical formula forms with quite simple variables. Therefore it is very useful for engine design.
Technical Paper

Improvement of Error in Piezoelectric Pressure Transducer

1999-03-01
1999-01-0207
Measuring precise cylinder pressure traces of internal combustion engines is an important factor for estimating their performances. It is known that the actual pressure readings measured with piezoelectric pressure transducers nave various forms of error. This paper is devoted to a study of compensation methods for reducing the errors caused by time constant values and thermal shock. Numerical analysis were carried out for the both errors to derive the equations of error compensation using the actual pressure data. The results indicate that the errors are corrected quite well with the obtained equations.
Technical Paper

The Method of Measuring Air-Fuel Ratio by Radical Luminescence in High Combustion Pressure

1999-03-01
1999-01-0507
The relations of luminous intensity of the radicals, CH, C2, and OH radical, and the equivalence ratio, ϕ under high combustion pressure region (7.0MPa maximum) were investigated. Luminous intensity of each radical and combustion pressure were experimentally obtained using a constant volume combustion chamber. It was found that luminous intensity of each radical can be expressed as a function of ϕ and the combustion pressure. The estimation of ϕ was done within the region, 0.8<ϕ<1.2 and 2.0MPa
Technical Paper

A Method of Estimating Gasoline Engine Performance

1996-02-01
960011
When the power or specific fuel consumption is estimated in design process, thermodynamic consideration for the estimation is generally insufficient. Hence, a theory that can estimate these performances accurately is investigated in this paper. As a result of investigation, it is clear that the effect of pumping loss in wide-opene throttle valve operation has to be excluded from the mechanical loss which is measured in the motoring test. It also becomes clear that a new coefficient called pumping loss coefficient ηP has to be considered for the negative work for pumping. From the foregoing, theoretical formulas for estimating the net power Pe and net specific fuel consumption be. which are formed with various efficiencies and coefficients are as follows: It is verified that the estimation from these formulas agree well with the experimental test values using stoichiometric mixture ratio.
Technical Paper

The Fundamental Research of Combustion in the Stratified Charge Engine With An Auxiliary Chamber

1978-01-01
785096
The major features of the stratified charge engine with an auxiliary chamber are: (1) the mixture in the combustion chamber has concentration gradient due to the auxiliary chamber and (2) turbulent flame is injected into the main chamber. The objective of this research is to examine those effects upon the combustion characteristics and the burned gas composition. The characteristics of flame propagation were examined by using a series of schlieren photographs. A summary of the major conclusion of this research is given below: (1) The mixtures supplied in the main and the auxiliary chambers burn without mixing with each other. (2) The concentrations of HC and CO decrease as the closer the mixture in the auxiliary chamber approaches stoichiometry and the leaner the mixture in the main chamber.
X