Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Research and Development of a Hydrogen-Fueled Engine for Hybrid Electric Vehicles

2000-03-06
2000-01-0993
Hybrid electric vehicle with internal combustion engine fueled with hydrogen can be a competitor to the fuel cell electric vehicle that is thought to be the ultimately clean and efficient vehicle. The objective in this research is to pursue higher thermal efficiency and lower exhaust emissions in a hydrogen-fueled engine for the series type hybrid vehicle system. Influences of compression ratio, surface / volume ratio of combustion chamber, and boost pressure on thermal efficiency and exhaust emissions were analyzed. Results showed that reduction of the surface / volume ratio by increased cylinder bore was effective to improve indicated thermal efficiency, and it was possible to achieve 44% of indicated thermal efficiency. However, brake thermal efficiency resulted in 35.5%. It is considered that an improved mechanical efficiency by an optimized engine design could increase the brake thermal efficiency largely.
Technical Paper

A Study on the Mechanism of Backfire in External Mixture Formation Hydrogen Engines -About Backfire Occurred by Cause of the Spark Plug-

1997-05-01
971704
It is a well-known fact that the exhaust emission characteristics of hydrogen fueled engines are extremely good. The external mixture formation - a hydrogen fuel supply method - has the merit of practically zero NOx emission level in the lean mixture range with the excess air ratio λ set at 2.0 or greater as well as the merits of simple mechanism and easy operation. However, the practical use of such engines has been impeded partly due to the occurrence of backfire where the excess air ratio λ is 2 to 3. In order to allow the practical use of the hydrogen fueled engines with external mixture formation, it is vital to determine the causes of backfire and to establish proper countermeasures. It is found through a recent study conducted on the mechanism of backfire that the abnormal electric discharge in the intake stroke is one of the causes of backfire.
Technical Paper

Study on Mechanism of Backfire in Hydrogen Engines

1994-10-01
942035
In this study, the cause of backfire concerning an external mixture formation type hydrogen engine was clarified. It has been known that the maximum output power of the external mixture formation type hydrogen engine should be kept significantly low, because of backfire. Generally, the backfire of this type of hydrogen engine is caused by pre-ignition. In this type of hydrogen engine, pre-ignition occurred for a range of lean mixture. Under this study, therefore, the relationship between the occurrence of backfire and the temperature at the tip of the spark plug electrode, and the detection of the luminescence spectrum of the flame near the spark plug were examined and studied in relation to the spark plug ignition theory which appeared to be promising. Then the pre-ignition timing and location were studied by detecting the flame luminescence spectrum.
Technical Paper

Effect of Hydrogen Jet on Mixture Formation in a High-Pressure Injection Hydrogen Fueled Engine with Spark Ignition

1993-08-01
931811
In order to establish hydrogen engines for practical use, it is important to overcome difficulties caused by unique characteristics of hydrogen fuel. A hydrogen engine with direct injection right before top dead center(TDC) and spark ignition has advantages such as prevention of abnormal combustion and realization of high power output near the stoichiometric air-fuel ratio, in comparison with an engine with external mixture. On the other hand, it has been pointed out that ignition and combustion for this type of hydrogen engines should be improved and that further studies on mixture formation of air and injected hydrogen are necessary for the improvement. For the direct injection hydrogen engine, mixture is formed both by air flow inside the combustion chamber and by injected hydrogen jet.
Technical Paper

Low NOx Emission Automobile Liquid Hydrogen Engine by Means of Dual Mixture Formation

1993-03-01
930757
According to authors' previous research, high pressure hydrogen engines with direct injection right before TDC and spark ignition obtain high performance and eliminate almost. abnormal combustion. This study has clarified the mooted points in the flame propagation to adjacent jets and the control of the optimum spark timing and large NOx emissions even in leaner than excess air ratio of λ=2. Nitric oxides (NOx) is the only the pollutant in the exhaust gases emitted by hydrogen engines. It has been found that the NOx formation largely depends on the mixture formation method. In order to operate the engine in a small amount of NOx, an experimental study was carried out to investigate the reduction of NOx and the output power by using dual mixture formation method, external mixture formation and direct injection.
Technical Paper

An Increase of Engine Oil Consumption at High Temperature of Piston and Cylinder

1981-09-01
810976
Under high thermal load operation, engine oil consumption was monitored using the hydrogen fuel method. Burning was detected in the piston top-land clearance, and this may be a key to understanding the carbon adhesion mechanism on the piston top-land. The following results were obtained in this study: 1. Oil consumption is greatly affected by the evaporation of oil at temperatures higher than 160°C. 2. Burning is found in top-land clearances of hydrogen, gasoline, and large clearance diesel engines. However, only weak burning could be detected in diesel engines with tight-fitting crowns.
Technical Paper

Piston Ring Motion and Its Influence on Engine Tribology

1979-02-01
790860
Piston rings have significant influences on the engine performance and tribology. The effect of such rings has a delicate relation with the axial motion in the groove. By simultaneously measuring the ring motion and the gas pressure between the rings in actual operations of automobile gasoline engines and diesel ones, the authors could observe undesirable motions none has ever expected. The motions gave the engines serious problems. One was the occurrence of ring scuffing when, in a gasoline engine operation, the top and second ring lifted off simultaneously before combustion T.D.C. The other was, in a supercharged diesel engine, the time which the top ring contacts on the upper groove surface is long, which resulted in an asymmetric temperature distribution in the ring and possibility of a great oil consumption.
X