Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Effects of Spray Internal EGR Using CO2 Gas Dissolved Fuel on Combustion Characteristics and Emissions in Diesel Engine

2020-01-24
2019-32-0592
We have proposed the application of Exhaust Gas Recirculation (EGR) gas dissolved fuel which might improve spray atomization through effervescent atomization instead of high injection pressure. Since EGR gas is included in the spray of EGR gas dissolved fuel, it directly contributes to combustion, and the further reduction of NOx emissions is expected rather than the conventional external EGR. In our research, since highly contained in the exhaust gas and highly soluble in the fuel, CO2 was selected as the dissolved gas to simulate EGR gas dissolved. In this paper, the purpose is to evaluate the influence of the application of CO2 gas dissolved fuel on the combustion characteristics and emission characteristics inside the single cylinder, direct injection diesel engine. As a result, by use of the fuel, smoke was reduced by about 50 to 70%, but NOx reduction does not have enough effect.
Technical Paper

Improvement of Combustion Characteristics and Emissions by Applying CO2 Gas Dissolved Fuel in Diesel Engine

2019-12-19
2019-01-2274
We have proposed the application of EGR gas dissolved fuel which might improve spray atomization through effervescent atomization instead of high injection pressure. In this paper, the purpose is to evaluate the influence of the application of CO2 gas dissolved fuel on the combustion characteristics and emissions inside the single cylinder, direct injection diesel engine. As a result, by use of the fuel, smoke was reduced by about 50 to 70%. The amount of NOx was reduced at IMEP=0.3 MPa, but it was increased at IMEP=0.9 MPa.
Technical Paper

A Study on PCCI Combustion Control in Medium Speed Dual-Fuel Engine

2019-12-19
2019-01-2176
To achieve simultaneous reduction of CO2 and NOx emission from the Dual-Fuel (DF) engine using natural gas and diesel fuel, Premixed Charge Compression Ignition (PCCI) type combustion is a promising technology. However, to apply this technology to the practical operation of the DF engine, combustion control is key challenge because the ignition of PCCI type combustion is governed by chemical reaction of natural gas/air and diesel fuel premixture and not controlled by direct control parameter such as spark timing of spark-ignition natural gas engine or diesel fuel injection timing of micro-pilot type DF engine. The focus of this study is to understand the effect of engine control parameters on DF-PCCI combustion characteristics to establish the combustion control strategy in medium speed DF engine. Engine experiments using a 4-stroke medium speed single cylinder engine were carried out. Firstly, early two stage diesel pilot injection was applied to realize DF-PCCI combustion.
Technical Paper

Improvement of Spray and Combustion Process by Applying CO2 Gas Dissolved Fuel

2017-11-05
2017-32-0046
The CO2 gas dissolved fuel for the diesel combustion is effective to reduce the NOx emissions to achieve the internal EGR (Exhaust Gas Recirculation) effect by fuel. This method has supplied EGR gas to the fuel side instead of supply EGR gas to the intake gas side. The fuel has followed specific characteristics for the diesel combustion. When the fuel is injected into the chamber in low pressure, this CO2 gas is separated from the fuel spray. The distribution characteristics of the spray are improved and the improvement of the thermal efficiency by reduction heat loss in the combustion chamber wall, and reduce soot emissions by the lean combustion is expected. Furthermore, this CO2 gas decreases the flame temperature. Further, it is anticipated to reduce NOx emissions by the spray internal EGR effect.
Journal Article

Effects of Ambient Oxygen Concentration on Soot Processes in Diesel Spray Flame - A Qualitative Comparison between TEM Analysis and LII/Scattering Laser Measurements

2014-10-13
2014-01-2642
For better understanding of soot formation and oxidation processes in diesel combustion, effects of ambient oxygen concentration on in-flame diesel soot particle properties including concentration, size, number density and morphology were investigated in a constant volume combustion vessel via simultaneous LII (Laser-Induced Incandescence) / LS (Laser Scattering) imaging techniques and TEM (Transmission Electron Microscopy) analysis. An analysis of LII and LS images yielded 2-dimensional distribution images of concentration, size and number density of soot particles in diesel spray flame, based on a practical assumption that LII and LS signals are proportional to the soot particle size to the power of 3 and 6, respectively.
Journal Article

Sizing of Soot Particles in Diesel Spray Flame -A Qualitative Comparison between TEM Analysis and LII/Scattering Laser Measurements

2013-10-14
2013-01-2576
For better understanding of soot formation and oxidation processes in a diesel spray flame, two kinds of planar soot imaging techniques, Laser-Induced Incandescence (LII) and Laser Scattering (LS) techniques, were applied simultaneously to a diesel spray flame in a constant-volume combustion vessel under a diesel-like condition (2.5MPa, 940K). An analysis of LII and LS images yielded 2-dimensional distribution images of concentration, size and number density of soot particles in the spray flame, based on an assumption that LII and LS signals are proportional to the soot particle size to the power of 3 and 6, respectively. In order to obtain clearer variation trend in the soot concentration, size and number density distribution in significantly fluctuating single-shot diesel spray flames, spontaneous and time-integrated ensemble averaging of the laser-measured images were employed.
X