Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

An Integrated Control Algorithm for an SI Engine and a CVT

1999-03-01
1999-01-0752
A new integrated control system has been developed for controlling an SI engine and a CVT proactively so as to obtain the demanded drive torque most efficiently. Taking into account ease of calibration, a control system configuration has been achieved that determines the CVT ratio from the target drive torque and vehicle speed, based on the steady-state relationship between the demanded drive torque and the vehicle speed, gear ratio, engine torque and fuel economy. An analysis was made of drive torque characteristics while the ratio was changing under transient conditions. The results showed that using engine torque to compensate for the ratio change response lag and inertia torque, which is proportional to the differential of the gear ratio, is effective in improving drive torque responsiveness.
Technical Paper

A Study of an EGR Control System for Diesel Engines Based on an Intake/Exhaust System Model

1997-02-24
970621
An exhaust gas recirculation (EGR) system that recirculates a portion of the exhaust gas back to the intake system is effective in reducing nitrogen oxide (NOx) emissions from diesel engines. However, improved control accuracy over the EGR flow rate is required, because an excessively large flow rate causes emissions of particulate matter (PM) to increase. In recent years, direct injection (DI) diesel engines have also been used on ordinary passenger cars, because their fuel economy is superior to that of indirect injection (IDI) diesel engines. Since DI engines are more sensitive to the EGR flow rate than their IDI counterparts, improving the accuracy of EGR flow rate control has become even more significant. This study concerned an EGR control algorithm based on the results of calculations performed with an engine model capable of representing the dynamic states of the intake and exhaust systems.
Technical Paper

Application of a Control System CAD Program to a Study of an Electronic Engine Control System

1994-03-01
940658
Automotive electronic control systems have tended to become more complex in recent years as a result of stronger requirements for environmental friendliness and higher levels of driveability. The first step in developing a control system is to study the required logic and system configuration at the initial stage of new vehicle development. The authors have incorporated an engine-vehicle model in a control system CAD program to simulate the logic needed for various control tasks. This paper presents a typical application in which a behavior of some outputs, such as engine torque and acceleration, was analyzed, and the electronic controls needed to assure driveability were identified. The construction and operation of a controller-in-the-loop system are also described.
X