Refine Your Search

Search Results

Author:
Viewing 1 to 2 of 2
Technical Paper

Investigating GSM Interference in Automotive Sound Systems Using State of the Art Electromagnetic Simulation

2013-10-07
2013-36-0198
EMI (Electromagnetic Interference) is one of the major concerns today in the automotive industry. The main reason is that vehicles are using and depending more on electronic technology. The causes of electromagnetic interference problems are not only related to the ever-increasing number of embedded electronics systems in vehicles, but also to external electronic devices that are brought in to automobiles by drivers and passengers (e.g. cell phone, MP3 players, Bluetooth devices, portable video games). Even though these problems can cause serious issues on safety systems like the airbag, their symptoms are often noticed in a less harm way in the sound system. A very common EMI problem in automotive sound systems is a particular noise caused by devices that uses GSM (Global System for Mobile Communications) technology. Most of the cell phones and vehicle locators rely on GSM technology.
Technical Paper

Full Vehicle Electromagnetic Simulation Using the Hybrid Finite Element Boundary Integral Approach

2011-10-04
2011-36-0085
The finite element method (FEM) can be used as an analysis tool in automotive electromagnetic engineering and recently new technologies such as Domain Decomposition Method (DDM) were employed to simulate very large field structures such as a whole vehicle. A FEM solver offers numerous advantages over other numerical methods, such as method of moments (MoM) and finite difference time domain (FDTD), because it has the ability to handle complex heterogeneous and anisotropic materials which is often used inside vehicles, also providing a very precise representation of complex geometries via high order tetrahedral elements. Nevertheless, for large field problems such as the scenario of the ISO 11451-2 where an antenna radiates a vehicle in an anechoic chamber, FEM solvers requires an interface between an infinite domain to a finite domain through the use of radiating boundary conditions on artificial truncation surfaces. This causes the solver to model a great quantity of air regio.
X