Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Shoulder Impact Response and Injury Due to Lateral and Oblique Loading

2003-10-27
2003-22-0003
Little is known about the response of the shoulder complex due to lateral and oblique loading. Increasing this knowledge of shoulder response due to these types of loading could aid in improving the biofidelity of the shoulder mechanisms of anthropomorphic test devices (ATDs). The first objective of this study was to define force versus deflection corridors for the shoulder corresponding to both lateral and oblique loading. A second focus of the shoulder research was to study the differences in potential injury between oblique and lateral loading. These objectives were carried out by combining previously published lateral impact data from 24 tests along with 14 additional recently completed lateral and oblique tests. The newly completed tests utilized a pneumatic ram to impact the shoulder of approximately fiftieth percentile sized cadavers at the level of the glenohumeral joint with a constant speed of approximately 4.4 m/sec.
Technical Paper

Shoulder Response Characteristics and Injury Due to Lateral Glenohumeral Joint Impacts

2000-11-01
2000-01-SC18
The objective of this study was to determine response characteristics and injury of the shoulder due to lateral impacts. The need for this data was heightened in the 1990s with increasing interest in harmonization of side impact standards, and questions regarding the measurement capabilities of dummies used in evaluating side impacts. A pneumatic impacting ram was employed in carrying out twenty-two lateral impacts to eleven unembalmed human cadavers at the level of the glenohumeral joint. Velocity of the ram at the time of impact was varied throughout the impacts from 3.5 to 7.0 m/sec, in an attempt to determine injury threshold. The cadavers were instrumented with tri-axial accelerometer blocks at ten locations in the shoulder region. Bony structures instrumented included the sternum, the first thoracic vertebra (T1), clavicles and scapulae. Output from the accelerometers was utilized to calculate impact forces and to examine the movement of the instrumented structures.
Technical Paper

The Translational Energy Criteria: A Validation Study for Non-Fracture Head Impacts

1997-11-12
973337
The development of the Translations Energy Criteria (TEC) has been underway for the last fifteen years. This criteria addresses brain contusion and skull fracture in the Anterior-Posterior (A-P), Left-Right (L-R), and Superior-Inferior (S-I) directions. The object of this strudy was to evaluate the ability of the TEC to predict non-fracture type injuries to the brain in the L-R and A-P directions up to the level of “serious.” Six unembalmed human cadavers were subjected to one head impact each. Tests one through three were frontal impacts, performed at 1.6, 3.9 and 6.7 m/s respectively. Tests four through six were lateral impacts, performed at 1.9, 3.8 and 6.1 m/s respectively. The impactor weighed 9.05 kg and was fitted with either a rigid or padded surface. The brain was repressurized and the head instrumented with two tri-axial linear accelerometer arrays and one angular velocity transducer. Two high speed motion picture views (1000 frames per second) were taken for each test.
Technical Paper

Chestband Analysis of Human Tolerance to Side Impact

1997-11-12
973320
A series of 26 human cadaver tests with chestband instrumentation and accelerometers were completed to assess side impact injury tolerance. A Heidelberg-type sled test system was used with thorax, abdomen, and pelvic load plates. Tests were conducted at the Medical College of Wisconsin and through the Ohio State University College of Medicine at the NHTSA Vehicle Research and Test Center at two different velocities: 24 kph and 32 kph. Test conditions included rigid wall, padded wall, and pelvic offset. Accelerations were recorded at rib 4, rib 8, and T12. Up to three chestbands were placed on each surrogate. Chest deflections were derived by computing chest contours at every millisecond throughout the event. The derived chest deflection-time curves were differentiated to obtain velocity of chest compression. Injury criteria including ASA15N, TTI, normalized chest deflection, and VC were computed. Resulting injuries ranged from AIS = 0 to AIS = 5.
X