Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Analysis of Brake Squeal Noise using FEM Part II: Effect of Operating Parameters and Control Methods

2004-11-16
2004-01-3331
Brake squeal noise has been under investigation by the automotive manufacturers for decades due to consistent customer complaints and high warranty costs. In most cases, the customer perceives the noise as a vehicle problem and demand having it fix by their dealer. J. D. Power surveys consistently show brake noise as one of the most critical vehicle quality measurements. Furthermore, the development of methods to predict the noise occurrence during the design of a brake system has been the target of many researchers in the last years. The complex eigenvalue analysis has been widely used to detect unstable frequencies in brake systems models. The method is fast and useful to provide design guidance, since operating parameters and control methods can be evaluated by a simulation procedure. This paper summarizes the application of the complex eigenvalue analysis in a finite element model of a commercial brake system.
Technical Paper

Characterization of Superficial Vibration Velocity of Disc Brake Components

2003-11-18
2003-01-3579
During the last years, the automotive industry dedicated great efforts to understand and solve the noise problem from disc brake systems. There are several types of brake noise problems, each one related with a frequency range of occurrence. In most cases, the customer perceives the noise as a vehicle problem and demand having it fix by their dealer. As a consequence, disc brake noise is one of the major contributors to the automotive manufactures warranty costs, leading the automotive industry to look for ways to control it. A large class of disc brake noise problems is associated with the resonant behavior of an operating brake system. However, the detection of these brake system modes during the operating condition can be very expensive, demanding the use of inertial dynamometers and laser vibrometer measurements.
Technical Paper

SEA modeling and experimental validation of structure-borne noise paths in an aircraft fuselage

2008-10-07
2008-36-0066
Statistical Energy Analysis (SEA) is the standard method used to access noise and vibration levels in aircrafts and it has been applied to a wide range of problems in the aerospace industry. Even though much research has been carried on in the subject, some questions still remain about the process of modeling aircraft structures and the necessary validation steps. In this work, the development of a SEA model of a fuselage section is discussed. Special attention is given to the structure-borne noise transmission between the fuselage and floor panels and different modeling approaches are investigated. Data obtained through experimental tests were then used to verify the modeling approaches. It is seen that overall SEA results display a good agreement with tests. In the case of the floor panel, model results are very sensitive to modeling approaches and given that the transmission path is correctly represented, the SEA results reasonably match the experimental data.
X