Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Finite State-Machine Verification Applied to Hybrid Systems

2012-10-02
2012-36-0429
Hybrid systems are characterized by a composition of discrete and continuous dynamics. In particular, the system has a continuous evolution and occasional jumps. The jumps are caused either by controllable, uncontrollable external events or by its continuous evolution. Inevitably, this type of system is present in mobility devices such as cars, ships, and aircrafts. Efforts to develop this type of system have increasingly suffered from cost and schedule overruns. In fact, the verification of such systems has become a key activity in the development life cycle. Historically, such activity demands experts and high efforts, and uses ad-hoc methods. Therefore, the aim of this work is to apply finite state-machine verification to hybrid systems.
Technical Paper

A Discussion on the Use of an Integrated Modular Avionics (IMA) Architecture to Simulate an Aerospace Control System

2011-10-04
2011-36-0182
The use of control architectures with the Integrated Modular Avionics (IMA) concept (“IMA architectures”) in aerospace and the Integrated Modular Electronics (IME) concept (“IME architectures”) in automotive applications is growing due to its reduced number of hardware such as processors, Line Replaceable Units (LRUs) and Electronic Control Units (ECUs), thereby reducing weight and costs. Furthermore, IMA architectures can perform complex reconfigurations in the case of failures and adapt themselves to changes in network functioning or operating modes, which make a control system very robust. The objective of this work is to discuss the use of an IMA architecture to simulate an aerospace control system responsible for maintaining a vehicle in a predetermined trajectory. To do that, we review the current literature related to IMA architectures and give an overview of their characteristics. Then, we choose an aerospace control system and discuss its simulation using an IMA platform.
X