Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Catalyst Performance Evaluation on E0 and E85 Fuels

2011-04-12
2011-01-0904
The differences in hydrocarbons (HCs) emitted by gasoline (E0) and ethanol (EtOH) blend fuels from flex-fuel capable engines can lead to differences in the performance of aftertreatment devices. Vehicle emission results have shown either better performance on E0 compared to E85 or vice versa, dependent on the vehicle calibration. In order to separate the impact of the vehicle and the catalyst, a laboratory study was conducted to evaluate performance on a pulse-flame (pulsator) reactor and compare reactivity towards E0 and E85 (85% EtOH-15% E0) exhaust. The catalysts evaluated were substrate-only, washcoat-only and fully formulated catalysts that had been aged either on a pulsator reactor or dynamometer engine. Catalyst performance was evaluated with light-off tests utilizing both slow and fast temperature ramp rates.
Technical Paper

Correlation between Virtual and Physical Test for Offset Deformable Barrier Crash for SUV

2011-01-19
2011-26-0091
In the present age automotive manufacturers are putting their effort to reduce product cycle time and product cost. This has been possible with the help of Computer Aided Engineering (CAE). CAE is playing vital role in design and develop of new products as well as up gradation of existing one to meet new safety regulations and customer requirements. It has become increasingly accepted that use of well-developed, CAE models present the best approach for upfront prediction of vehicle behaviour. The ability to simply predict trends is no longer acceptable. Meaningful results can be derived, and projections made, from the CAE model, only if the CAE results are correlated against physical tests. Correlation between Simulation and Physical test is key, to build confidence on product development with virtual validation. This paper discusses the correlation between the CAE and Physical Test for offset deformable barrier crash for 4 Wheel Drive (4WD) Sports Utility Vehicle (SUV) vehicle.
Technical Paper

Modeling Water Condensation in Exhaust A/T Devices

2010-04-12
2010-01-0885
Ignoring the impact of water condensation leads to incorrect temperature simulation during cold start, and this can lead to questions being raised about the overall accuracy of aftertreatment simulation tools for both temperature and emission predictions. This report provides a mathematical model to simulate the condensation and evaporation of water in exhaust after-treatment devices. The simulation results are compared with experimental data. Simulation results show that the temperature profiles obtained using the condensation model are more accurate than the profiles obtained without using the condensation model. The model will be very useful in addressing questions that concern the accuracy of the simulation tool during cold-start and heating up of catalysts, which accounts for the conditions where tailpipe emission issues are most significant.
Technical Paper

Simulation of Gear Shift Force Curve and Shift Rail Ramp Profile

2010-04-12
2010-01-0896
This paper presents a simulation for the gear shift process of a manual transmission, implemented using a library function. All the subsystem (i.e. synchronizer and the shift system) are correlated to generate a gear shift curve for optimum shift ability prediction of a manual transmission. A 5-speed manual transmission is used as an example in the paper to illustrate the simulation, co-relation and the validation of the gear shift performance curve on the vehicle. The dynamic behavior of the shift system and synchronizer in engaging and disengaging the gear is simulated through the gear shift characteristics to generate the shift rail's ramp profile. The synchronizer travel is co-related with the shift rail ramp profile to get a negative force after synchronization is over. The profile indicates the role of the detent ball diameter, radius on the shift rail ramp's profile etc and how it affects synchronizer force over the shift rail travel.
Technical Paper

Reductive Elimination as a Mechanism for Purging a Lean NOx Trap

2006-04-03
2006-01-1067
The mechanism for the purging of a lean NOx trap has been investigated. For realistic purge times (e.g., 2 to 5 seconds), the stored NOx species do not decompose simply from equilibrium considerations (i.e., from the drop in O2 and NO concentrations during the rich purge). Instead, the decomposition of stored NOx is promoted by the reductants in the exhaust by a process referred to as reductive elimination. H2 is far more effective than CO or C3H6 for promoting this reductive elimination, particularly at low temperatures (e.g., 250°C). As long as H2 is available in the feedgas, H2O does not participate in the reductive elimination. However, if CO is the only reductant, H2O is needed to convert some of the CO to H2 through the water-gas-shift reaction. H2O is also important for the efficient storage of NOx during lean operation, possibly by enhancing the spillover of NO2 from a precious metal site to a NOx storage site.
Technical Paper

Analysis of Storage and Reaction Phases of LNT for Diesel Engine Exhaust Treatment

2005-10-24
2005-01-3882
A one-dimensional two-phase model of an adsorptive catalytic monolith reactor is used to analyze the Lean NOx Trap (LNT). The model simulates the features of NOx storage and reduction (NSR), a periodic process involving the sequential trapping on a storage component and conversion of NOx to nitrogen on a precious metal catalyst under lean conditions found in the exhaust of lean burn and diesel vehicles. A detailed storage kinetic model is used for the simulations. The NOx storage phase on Pt/BaO/Alumina catalyst has been studied in detail with particular attention to the effect of fluid velocity, storage time and storage component loading. The reductive phase is also analyzed. The simulated results are compared with our lab experimental data. The model predictions are in good agreement with the experimental observations and trends reported in the literature.
Technical Paper

Modeling of NOx Storage and Reduction for Diesel Exhaust Emission Control

2005-04-11
2005-01-0972
A one-dimensional two-phase model of an adsorptive catalytic monolith reactor (used as Lean NOx Trap, LNT) is developed and analyzed. The model simulates the features of NOx storage and reduction (NSR), a periodic process involving the sequential trapping on a storage component and conversion of NOx to nitrogen under lean conditions found in the exhaust of lean burn and diesel vehicles. The effect of design and operating parameters, such as the lean and rich times and feed temperature, on NO2 conversion is examined. Using a relatively simple kinetic model and without any attempt to fit data, the LNT model predicts the dependencies of NO2 conversion on several feed parameters that are in good agreement with experimental observations.
Technical Paper

A Web Based Finite Element Frequency Analysis Program for Designing a Driveline System

2004-10-26
2004-01-2724
A web based software program has been developed to do a Finite Element (FE) analysis of a simplified driveline system. In the past, an expert analyst had to make a Finite Element Model, analyze and then report results. It has been observed that this process is time consuming besides the difficulties of doing quick parametric studies, geographical location of designers, analysts, etc. The web-based software program aims to solve these issues. The designer could get analytical & Finite element results anywhere around the world (where the designer has access to the web) without any expertise in FE modeling. This software is a joint effort of Engineering and Information Technology (IT) software groups. It is based on Active Server Page (ASP) technology and MSC/NASTRAN technologies combined. Input data deck is prepared from user inputs and submitted over the internet to a remote system, solved and results are retrieved and plots shown in minutes, instead of days earlier.
Technical Paper

Development of a State of Art Agricultural Tractor

1996-10-01
962494
The agricultural tractors manufactured and used extensively in Indian farms are of 50's & 60's design. Tractor technology, world-wide has undergone vast improvement over the years and a need was felt to offer a tractor with contemporary technology to the Indian market. The paper describes the desirable features for a tractor for Indian Market and specifications outlined from therein for the development of a state-of-art agricultural tractor model OX-45. The methodology adopted for design, development, testing and analysis for major aggregates is also described in brief.
X