Refine Your Search

Search Results

Viewing 1 to 3 of 3
Journal Article

Development of New Toyota D-Series Turbocharger for GD Diesel Engine

2015-09-01
2015-01-1969
There is increasing demand for highly functional diesel engine turbochargers capable of meeting Euro 6 emissions regulations while improving dynamic performance and fuel economy. However, since these requirements cannot be easily satisfied through refinements of existing technology, Toyota Motor Corporation has developed the new D-series turbocharger for initial installation in its GD diesel engine. The higher efficiency and wider operation range of the new turbocharger enabled the amount of the turbine flow capacity to be reduced by 30%, while helping to improve dynamic response and fuel economy. The mechanism causing the generation of fuel deposits in the fuel injection system upstream of the turbocharger, which was adopted for compliance with emissions regulations, was analyzed and fundamental countermeasures were applied. The result is a new highly functional turbocharger with greatly enhanced reliability.
Technical Paper

Development of 0W-20 ILSAC GF-3 Gasoline Engine Oil

2002-05-06
2002-01-1636
A new 0W-20 gasoline engine oil was developed to improve fuel economy over ILSAC GF-2 5W-20 gasoline engine oils and to meet ILSAC GF-3 requirements. The main improvements made were to viscosity and friction modifiers. Viscosity at 80°C was adjusted to obtain better fuel economy than with 5W-20 oil in the Japanese 10-15 mode test. Therefore, low-temperature viscosity decreased to 0W and high-temperature high-shear viscosity exceeds 2.6 mPa?s. Friction modifiers and other additives were investigated to find the lowest friction characteristics. The resulting formulation shows more than a 2.0% fuel economy gain in the Japanese 10-15 mode test and the new oil has been certified as meeting ILSAC GF-3 requirements.
Technical Paper

Development of Method for Predicting Efficiency of Oil Mist Separators

2000-03-06
2000-01-1234
The inflow of oil mist particles contained in blow-by gas into the intake system worsens emissions. A higher performance oil mist separator system is required to meet emission regulations which will inevitably become stricter in the future. In developing the oil mist separator, however, much of the development time in the past was spent in carrying out repeated tests and studying separator designs. We, therefore, have improved the separator development process by using Computational Fluid Dynamics (CFD) which added several new ideas to improve the analysis accuracy. The comparison of calculated results and experimental results has confirmed that a sufficient accuracy can be obtained to make this method applicable for practical use.
X