Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

A New Engine Control System Using Direct Fuel Injection and Variable Valve Timing

1995-02-01
950973
A new engine drivetrain control system is described which can provide a higher gear ratio and leaner burning mixture and thus reduce the fuel consumption of spark ignition engines. Simulations were performed to obtain reduced torque fluctuation during changes in the air - fuel ratio and gear ratio, without increasing nitrogen oxide emissions, and with minimum throttle valve control. The results show that the new system does not require the frequent actuation of throttle valves because it uses direct fuel injection, which increases the air - fuel ratio of the lean burning limit. It also achieves a faster response in controlling the air mass in the cylinders. This results in the minimum excursion in the air - fuel ratio which in turn, reduces nitrogen oxide emissions.
Technical Paper

Air Flow Metering and Combustion Control for Spark Ignition Engines

1993-03-01
930215
The relationships between air flow metering and combustion control for spark ignition engines, such as engines with three way catalysts, lean NOx catalysts, two stroke engines and direct fuel injection engines were investigated. The effects of control parameters on combustion were analysed and the relationships between control parameters and air flow metering and roles of the meters in combustion control were clarified. The control strategies adaptable to many types of engines which have a wide control range of the air/fuel mass ratio are classified as (1) air quantity control,(2) fuel quantity control, and (3) exhaust gas recycle quantity control. The control parameters for the three strategies are fuel quantity, air quantity, exhaust gas recycle quantity, exhaust gas temperature, knocking, excess air factor, and mixture quality with additional parameters of swirl ratio, and spark timing for conventional spark ignition engines, two stroke engines and direct injection engines.
Technical Paper

Study on Variable Injection Pattern Control System in a Spark Ignition Engine

1991-02-01
910080
Mixture formation technology for multipoint fuel injection systems in spark ignition engines has been reviewed regarding reduced exhaust emissions, fuel consumption and improved engine performance. In conventional systems, under light load conditions, the mixture of fuel to suction air is not uniform due to a short injection pulse width against a long duration of suction stroke. Under heavy load conditions, fuel spray is apt to be deflected by the air flow through the intake port and the injected fuel clings and remains onesidely on the cylinder wall during the combustion cycle. Under cold start conditions, the fuel on the intake manifolds and ports is not evaporated quickly enough so that it is evaporated in the cylinder after the temperature rises due to the compression stroke. A lot of fuel is injected to compensate for the small evaporation rate.
Technical Paper

Real Time Control for Fuel Injection System with Compensating Cylinder-by-Cylinder Deviation

1990-02-01
900778
We have examined a new precise control method of the air fuel ratio during a transient state which provides improved exhaust characteristics of automobile engines. We investigated the measurement method for the mass of fresh air inducted by the cylinder, which is most important for controlling the air fuel ratio. The mass of fresh air must be measured in real time because it changes in each cycle during a transient state. With an conventional systems, it has been difficult to get accurate measurement of this rapidly changing mass of fresh air. The method we studied measures the mass of fresh air by using the intake manifold pressure and air flow sensors. During a transient state, the reverse flow of the residual gas from the cylinder into the intake manifold, which occurs at the first stage of the suction stroke, changes with each cycle. The mass of fresh air changes accordingly.
X