Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Analysis of Engine Performance and Combustion Characteristics of Diesel and Biodiesel blends in a Compression Ignition Engine

2016-10-25
2016-36-0391
Renewable fuels have received more attention in the last few decades since the fuel demand is constantly increasing. In this scenario, fuels from vegetable oils are emerging as an interesting alternative. In this study, biodiesel produced from used cooking oil was studied. Several concentrations of biofuel were tested to evaluate their performance and combustion characteristics i.e. 7% (B07), 17% (B17), 27% (B27), 52% (B52), 77% (B77) and 100% by volume of Biodiesel (B100) on conventional diesel. Tests were conducted in a single cylinder four-stroke compression ignition engine. A 1-D computational model was built and compared to experimental results. The biodiesel concentration in the blends had influence on engine performance by increasing fuel consumption due to its reduced lower heating value. In addition, larger fractions of biodiesel on conventional diesel presented higher peak of heat release.
Technical Paper

Combustion Analysis of a Diesel Engine Using Computer Simulation

2012-10-02
2012-36-0370
The ever increasing pressure for more efficient engines, with lower production cost and time has led to the development of advanced simulation tools. Likewise, the experimental development of combustion systems has benefited from computational tools while reducing the necessary experimental time. This paper describes the analysis of combustion performance of a Diesel engine normally used on generator sets. A detailed heat release analysis is performed through one-dimensional simulation software and experimental results, enabling a comprehensive description of combustion parameters of the engine through a simplified study. Brake and indicated values were obtained and analyzed to point out efficiency maps and show the effectiveness of the simulation tool in engine and combustion systems development.
Technical Paper

Comparison between the WLTC and the FTP-75 driving cycles applied to a 1.4 L light-duty vehicle running on ethanol

2020-01-13
2019-36-0144
The forecast scenarios regarding the environmental pollution raises a question whether the current vehicle emission certification is reliable enough to assure fleet agreement with the legal limits. Type approval tests have been performed on chassis dynamometer in order to evaluate the emission factors and fuel consumption for passenger cars. Standardized procedures such as the FTP-75 proposed in the United States (currently incorporated in the Brazilian legislation) and the Worldwide harmonized Light vehicles Test Cycle (WLTC), a transient driving cycle model designed by the European Union to overcome the shortcomings of the New European Driving Cycle (NEDC), are discussed in this paper. Both cycles were performed in a chassis dynamometer with a flex-fuel passenger car running on ethanol blend (E92W08). The driver, vehicle and fuel were kept constant so the comparison between the cycles would not be compromised.
Technical Paper

Comparison of Performance, Efficiency and Emissions between Gasoline and E85 in a Two-Stroke Poppet Valve Engine with Lean Boost CAI Operation

2015-04-14
2015-01-0827
Controlled Auto Ignition (CAI), also known as Homogeneous Charge Compression Ignition (HCCI), is one of the most promising combustion technologies to reduce the fuel consumption and NOx emissions. Most research on CAI/HCCI combustion operations have been carried out in 4-stroke gasoline engines, despite it was originally employed to improve the part-load combustion and emission in the two-stroke gasoline engine. However, conventional ported two-stroke engines suffer from durability and high emissions. In order to take advantage of the high power density of the two-stroke cycle operation and avoid the difficulties of the ported engine, systematic research and development works have been carried out on the two-stroke cycle operation in a 4-valves gasoline engine. CAI combustion was achieved over a large range of operating conditions when the relative air/fuel ratio (lambda) was kept at one as measured by an exhaust lambda sensor.
Technical Paper

Engine Downsizing through Two-Stroke Operation in a Four-Valve GDI Engine

2016-04-05
2016-01-0674
With the introduction of CO2 emissions legislation in Europe and many countries, there has been extensive research on developing high efficiency gasoline engines by means of the downsizing technology. Under this approach the engine operation is shifted towards higher load regions where pumping and friction losses have a reduced effect, so improved efficiency is achieved with smaller displacement engines. However, to ensure the same full load performance of larger engines the charge density needs to be increased, which raises concerns about abnormal combustion and excessive in-cylinder pressure. In order to overcome these drawbacks a four-valve direct injection gasoline engine was modified to operate in the two-stroke cycle. Hence, the same torque achieved in an equivalent four-stroke engine could be obtained with one half of the mean effective pressure.
Technical Paper

HCCI of Wet Ethanol on a Dedicated Cylinder of a Diesel Engine

2017-03-28
2017-01-0733
Ethanol with high levels of hydration is a low cost fuel that offers the potential to replace fossil fuels and contribute to lower carbon dioxide (CO2) emissions. However, it presents several ignition challenges depending on the hydration level and ambient temperature. Advanced combustion concepts such as homogeneous charge compression ignition (HCCI) have shown to be very tolerant to the water content in the fuel due to their non-flame propagating nature. Moreover, HCCI tends to increase engine efficiency while reducing oxides of nitrogen (NOx) emissions. In this sense, the present research demonstrates the operation of a 3-cylinder power generator engine in which two cylinders operate on conventional diesel combustion (CDC) and provide recycled exhaust gas (EGR) for the last cylinder running on wet ethanol HCCI combustion. At low engine loads the cylinders operating on CDC provide high oxygen content EGR for the dedicated HCCI cylinder.
Technical Paper

HCCI of wet ethanol on dedicated cylinder of a diesel engine using exhaust heat recovery

2018-09-03
2018-36-0191
Low cost ethanol with high levels of hydrations is a fuel that can be easily produced and that offers the potential to replace fossil fuels and contribute to reduce greenhouse gas emissions. However, it shows several ignition challenges depending on the hydration level, ambient temperature compression ratio and other engine-specific aspects. Advanced combustion concepts such as homogeneous charge compression ignition (HCCI) have shown to be very tolerant to the water content in the fuel due to their non-flame propagating nature. Moreover, HCCI tends to increase engine efficiency while reducing oxides of nitrogen (NOx) emissions. In this sense, the present research demonstrates the operation of a 3-cylinder power generator engine in which two cylinders operate on conventional diesel combustion (CDC) and provide recycled exhaust gas (EGR) for the last cylinder running on wet ethanol HCCI combustion.
Journal Article

Investigation of Early and Late Intake Valve Closure Strategies for Load Control in a Spark Ignition Ethanol Engine

2017-03-28
2017-01-0643
The more strict CO2 emission legislation for internal combustion engines demands higher spark ignition (SI)engine efficiencies. The use of renewable fuels, such as bioethanol, may play a vital role to reduce not only CO2 emissions but also petroleum dependency. An option to increase SI four stroke engine efficiency is to use the so called over-expanded cycle concepts by variation of the valve events. The use of an early or late intake valve closure reduces pumping losses (the main cause of the low part load efficiency in SI engines) but decreases the effective compression ratio. The higher expansion to compression ratio leads to better use of the produced work and also increases engine efficiency. This paper investigates the effects of early and late intake valve closure strategies in the gas exchange process, combustion, emissions and engine efficiency at unthrottled stoichiometric operation.
Technical Paper

Investigation of advanced valve timing strategies for efficient spark ignition ethanol operation

2018-09-03
2018-36-0147
Biofuels for internal combustion engines have been explored worldwide to reduce fossil fuel usage and mitigate greenhouse gas emissions. Additionally, increased spark ignition (SI) engine part load efficiency has been demanded by recent emission legislation for the same purposes. Considering theses aspects, this study investigates the use of non-conventional valve timing strategies in a 0.35 L four valve single cylinder test engine operating with anhydrous ethanol. The engine was equipped with a fully variable valve train system enabling independent valve timing and lift control. Conventional spark ignition operation with throttle load control (tSI) was tested as baseline. A second valve strategy using dethrottling via early intake valve closure (EIVC) was tested to access the possible pumping loss reduction. Two other strategies, negative valve overlap (NVO) and exhaust rebreathing (ER), were investigated as hot residual gas trapping strategies using EIVC as dethrottling technique.
Technical Paper

Simulation and Experimental Results of a Diesel Engine Operating With Fumigated Ethanol Fuel

2012-10-02
2012-36-0292
Due to the ever growing environmental concern regarding global warming and CO₂ emissions, the use of renewable fuels has become increasingly important. Thus, substituting fossil fuels such as diesel by ethanol from sugar cane can be a good alternative. There are, however, several ways of performing it. One of the simplest methods is to use fumigated ethanol with an electronic fuel injection system, operating in dual fuel mode with the original diesel injection, substituting part of the fuel by ethanol. This paper demonstrates the effects of using fumigated ethanol on performance of a standard power generation 4-cylinder turbocharged diesel engine. The research combines simulation results with experimental validation. Initially, a one-dimensional computational model of the original engine running solely on diesel was created and validated for several power levels.
Technical Paper

Study of Exhaust Re-Breathing Application on a DI SI Engine at Partial Load Operation

2018-09-03
2018-36-0129
Using Exhaust Gas Recycling (EGR) on internal combustion engines enables the reduction of emissions with a low or even no cost to the engine efficiency at part-load operation. The charge dilution with EGR can even increase the engine efficiency due to de-throttling and reduction of part load pumping losses. This experimental study proposed the use of late exhaust valve closure (LEVC) to achieve internal EGR (increased residual gas trapping). A naturally aspirated single cylinder direct injection spark ignition engine equipped with four electro-hydraulic actuated valves that enabled full valve timing and lift variation. Eight levels of positive valve overlap (PVO) with LEVC were used at the constant load of 6.0 bar IMEP and the speed of 1500 rpm. The results have shown that later exhaust valve closure (EVC) required greater intake pressures to maintain the engine load due to the higher burned gases content. Hence, lower pumping losses and thus higher indicated efficiency were obtained.
X